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Abstract: This research aims at further completing 
our novel Generic Multisensor Integration Strategy 
(GMIS) with the systematic development of three 
alternate attitude models, i.e., roll-pitch-heading (RPH), 
direction cosine matrix (DCM), and quaternion. The 
GMIS’ potential for a true sensor level data fusion is 
leveraged to its full extent here by facilitating 
comprehensive error analysis framework in Kalman 
filtering. A comparative analysis between the solutions 
resulted from the GMIS associated with each attitude 
model have been analysed and compared through real 
road test data. The attitude models were found to 
perform very consistently, exhibiting the same 
behaviours in the residuals of the process noise and 
measurement vectors along with the estimated variance 
components. Besides, an analysis was conducted to 
investigate how each attitude model reacts to a sudden 
trajectory variation captured by the IMU. Each attitude 
model still performed consistently, but the DCM model 
in particular exhibited resistance to absorbing 
erroneous observations into its process noise estimates. 

KEY WORDS: Generic Multisensor Integration 
Strategy, Attitude models, IMU Measurement Model, 
Double-Differenced GNSS, Kalman Filter with 
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1. INTRODUCTION 
The naturalization of GNSS-aided Inertial 

Navigation from the military industry into Surveying 
and Mapping defines one of the most successful 
technological evolutions in Spatial Science and 
Engineering over the past several decades. Specifically, 
it spawned the so-called Direct-Georeferencing 
Technology, which is defined as the process of 
assigning the Exterior Orientation of each image frame 

or scan line directly, without the need to use traditional 
aerial triangulation techniques [Hutton and Mostafa, 
2005; Dreier et al, 2021]. The use of this technology 
has been widely adopted across many applications, 
ranging from surveying to kinematic 
positioning/navigation for airborne, marine and land 
robotic/unmanned vehicles at positioning accuracies 
even approaching the cm level. Meanwhile, an 
increasing number of low-cost positioning and 
orientation sensors have been being made available on 
the market such as MEMS IMUs, GNSS receivers, 
cameras and LiDAR. This continually drives more 
advanced research and development activities in 
academia and industry.    

One important area of research is to innovate the 
multisensor integration strategy, or data fusion strategy, 
as the traditional IMU-centered integration strategy 
does not take advantage of modern advancements in 
computers, sensors, and data science. A central 
component of the traditional integration strategy, e.g. 
with integrating IMU, GNSS receivers, odometers, etc., 
is to assign the IMU sensor as the core sensor while all 
others are used as aiding sensors. Once the 
measurements from any aiding sensors become 
available, error measurements are generated as the 
differences between them and the derived values of the 
same types of the measurements from the inertial dead 
reckoning solutions based on the IMU output. Then, the 
error measurements are used to conduct the 
measurement update in the navigation Kalman filter. In 
this paradigm, the multisensor data fusion is not 
possible at the sensor level in terms of how to utilize 
the measurements, and the measurement update rate of 
the Kalman Filter (KF) depends upon the data rates of 
the aiding sensors, typically operating at a much lower 
frequency than the IMU data rate. Moreover, the 
information in IMU measurements could be used 

Editor-In-Charge: Dr. Qian Sun 

mailto:brunson@yorku.ca
mailto:jgwang@yorku.ca


80 
 

multiple times in one estimation process in the event of 
multiple integrated aiding sensors. The IMU output is 
not directly used to conduct the measurement updates 
in the navigation KF. In this way, the free inertial 
navigation calculation between two observation epochs 
of an aiding sensor (e.g. GNSS) could suffer from 
significant drifting, especially while working with low-
cost IMUs and/or during the aiding sensor data gaps 
[Wang et al, 2015; Qian et al, 2015; Qian, 2017]. 
Unfortunately, the majority of current research and 
development in multisensor integrated kinematic 
positioning/navigation systems simply build on top of 
the existing integration strategy, likely due to it being 
broadly accepted in the field [Farrell, 1995; Wagner 
and Wieneke, 2003]. 

The Generic Multisensor Integration Strategy 
(GMIS) [Qian, 2017; Qian et al, 2015, 2016; Wang et 
al, 2015; Wang and Sternberg, 2000; Wang, 1997] 
models the basic kinematic states such the position, 
velocity and acceleration vectors associated with the 
attitude angles on the ground of 3D kinematics, which 
allows directly applying the measurements from each 
of the sensors feasibly through measurement updates in 
Kalman filtering so that their individual error 
behaviours could be directly studied, including the 
gyroscopes and accelerometers. Such studies are not 
possible from IMU/GNSS error measurements under 
the traditional integration strategy. The GMIS is also 
unique in that it decouples the system model from the 
IMU measurements, which allows for more intuitive 
performance analysis of both measurement residuals 
and kinematic model (through the residuals of the 
process noise vector). A workflow diagram of the 
GMIS for a single IMU and two GNSS sensors (using 
double-differenced GNSS observations) is illustrated in 
Fig. 1.1. It may be readily expanded to accommodate 
any number/configuration of positioning/attitude 
sensors, which is another benefit to using the GMIS. 
However, no intensive study of attitude models under 
the GMIS has been conducted yet, which has motivated 
this research specifically. 
     Undoubtedly, attitude estimation is an essential part 
of any integrated inertial navigation system, so this 
work aims at further completing our GMIS with 
systematically studying three alternate attitude models, 
i.e., roll-pitch-heading (RPH), direction cosine matrix 
(DCM), and quaternion within the scope of the GMIS. 

The most common and direct way to represent 
system attitude in 3D kinematics is using the roll-pitch-
heading angles, but this attitude model famously suffers 
from the Gimbal Lock phenomenon when its pitch is 
approaching ±90 degrees in inertial dead reckoning. As 
a result, one may adopt alternative attitude models that 
do not suffer from Gimbal Lock, including: the 
Direction Cosine Matrix (DCM) representation 
[Choukroun et al, 2010; Wang and Rajamani, 2018], 

the axis-angle representation [Özgür Doruk, 2009; 
Meng et al, 2010], and the quaternion representation 
[Zhu et al, 2021; Yang, 2012; Sabatini, 2006]. There is 
a significant body of research exploring the efficiency 
of these alternative attitude models within the scope of 
traditional IMU-centered multisensor integrated 
navigation systems [e.g. Fresk and Nikolakopoulos, 
2013; Song et al, 2020], but there is comparatively little 
detailing the accuracy impact of changing the attitude 
model as well as its associated full-scale system model. 
The literature that does focus on comparing the 
accuracy of different attitude models relies on either the 
availability of an established ground truth trajectory or 
using simulated data [Prasetyo and Musa, 2021; Sheng 
and Zhang, 2015; Golabek et al, 2022]. Indeed, it is 
difficult to directly compare their accuracies without 
converting between attitude representations. 

 
Fig. 1.1  Flowchart of the general workflow of 

integrating positioning sensors in the GMIS. 

 As a competent analytical tool in discrete Kalman 
filtering, a framework for comprehensive error analysis 
[Wang, 1997, 2008, 2009; Caspary and Wang, 1998; 
Wang et al, 2021] has been developed and also further 
extended to the state-constrained Kalman Filter [Wang 
et al, 2022] that allows for the calculation of additional 
quantities, which could be used to directly compare 
between attitude models using a comprehensive error 
analysis accounting for the following: 
• Residual estimates for the observation and process 

noise vectors; 
• Redundancy contributions of the observation and 

process noise vectors; and 
• Variance factors for each element in the 

observation and process noise vectors. 
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These quantities provide significant insight into the 
accuracy of the position/attitude estimation process 
without requiring the use of a ground truth trajectory. 
Additionally, the estimated variance factors for the 
process noise vector and different types of the sensor 
measurements are unitless, which allows for direct 
performance comparison between different attitude 
models without requiring a conversion between attitude 
representations. 
 This research is to clearly present the analytical 
algorithms of the three attitude models in the GMIS. 
Combining the detailed information obtainable from 
the GMIS and the comprehensive error analysis 
enabled for the rigorous system state-constrained 
extended KF (EKF), this paper conducts a 
comprehensive analysis of the performance of each 
attitude model. 
 Following this introduction, Section 2 details the 
formulation of each attitude model in the GMIS, 
including a description of the matrix partitioning used 
in formulating the positioning KF and constraints 
required under each attitude model. Section 3 describes 
the system state-constrained KF and the quantities that 
are used for comprehensive error analysis. Section 4 
then conducts a comparative analysis between each of 
the different attitude models, with a particular focus on 
comparing their time-varying variance factors. 

2. MODELING IMU MEASUREMENTS IN 
THE GMIS 

2.1 Partitioning the EKF Matrices 

Generally, a KF uses a system model to define 
system kinematics, and measurement models to define 
how any observations relate to the current system state 
vector. At time 𝑡𝑡𝑘𝑘+1, these models are defined to be 

𝒙𝒙(𝑘𝑘 + 1) = 𝑨𝑨(𝑘𝑘 + 1, 𝑘𝑘)𝒙𝒙(𝑘𝑘)                                    
                                 +𝑩𝑩(𝑘𝑘 + 1, 𝑘𝑘)𝒘𝒘(𝑘𝑘)                    (2.1)  

     𝒛𝒛(𝑘𝑘 + 1) = 𝑪𝑪(𝑘𝑘 + 1)𝒙𝒙(𝑘𝑘 + 1) + 𝚫𝚫(𝑘𝑘 + 1)    (2.2)  

wherein 𝒙𝒙(𝑘𝑘 + 1) is the system state vector, 𝑨𝑨 is the 
transition matrix that defines the system kinematic 
models from 𝑡𝑡𝑘𝑘  to 𝑡𝑡𝑘𝑘+1, 𝒘𝒘 is the process noise vector 
that defines the errors in those kinematic models, 𝑩𝑩 
represents the process noise transition matrix, 𝒛𝒛 is the 
observation vector, 𝑪𝑪 is the design matrix, and 𝚫𝚫 is the 
measurement noise vector. 

 Additionally, constraint equations may be imposed 
upon the system state elements using 

  𝑯𝑯(𝒙𝒙(𝑘𝑘 + 1), 𝑘𝑘 + 1) + 𝒉𝒉(𝑘𝑘 + 1) = 𝑜𝑜                (2.3)  

where 𝑯𝑯 is the set of constraint equations imposed on 
the system state, and 𝒉𝒉 is a vector of constants defined 
by the constraint equations. 

In the navigation KF used in the GMIS, the basic 
system state vector consists of the linear position, 
velocity, and acceleration of the system, as well any 
attitude parameters and their first order time-derivatives. 
Generally, the system model is realized after 
kinematics that govern the motion of a moving system 
platform. For example, the linear motion of the system 
may be represented using an assumed constant linear 
acceleration between observation epochs, and the 
angular motion of the system may be represented using 
an assumed constant angular velocity between 
observation epochs.  

To accommodate multiple attitude models and 
observations from multiple sources, it is useful to 
partition the states and their associated transition and 
design matrices to allow for their modular construction 
in software implementation. The state vector may be 
partitioned into groups: 
• Position, velocity and acceleration; 
• Attitude and angular velocity; 
• GNSS integer ambiguity parameters; and 
• IMU systematic error states (gyro/accelerometer 

bias and scale factor errors). 
This partitioned state vector is expressed as 

𝒙𝒙 = �𝒙𝒙𝒑𝒑𝑻𝑻 𝒙𝒙𝒂𝒂𝑻𝑻 𝒙𝒙𝝀𝝀𝑻𝑻 𝒙𝒙𝑰𝑰𝑰𝑰𝑰𝑰𝑻𝑻 �
𝑻𝑻

                           (2.4)  

wherein the subscripts 𝑝𝑝, a, λ, and imu stand for the 
linear kinematic state (position, velocity, and 
acceleration) vector, the angular state (attitude and 
angular velocity) vector, the GNSS ambiguity vector, 
and the IMU systematic error vector, respectively. 
Correspondingly, the transition matrix, process noise 
vector, and process noise transition matrix given in (2.1) 
are partitioned as follows 

𝐀𝐀 = �

𝐀𝐀𝒑𝒑 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐀𝐀𝒂𝒂 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝐀𝐀𝝀𝝀 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐀𝐀𝑰𝑰𝑰𝑰𝑰𝑰

�                               (2.5)  

𝒘𝒘 = �𝒘𝒘𝒑𝒑
𝑻𝑻 𝒘𝒘𝒂𝒂

𝑻𝑻 𝒘𝒘𝝀𝝀
𝑻𝑻 𝒘𝒘𝑰𝑰𝑰𝑰𝑰𝑰

𝑻𝑻 �
𝑻𝑻

                          (2.6)  

𝐁𝐁 = �

𝐁𝐁𝒑𝒑 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐁𝐁𝒂𝒂 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝐁𝐁𝝀𝝀 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝐁𝐁𝑰𝑰𝑰𝑰𝑰𝑰

�                                (2.7)  

 For the GNSS/IMU integrated system with which 
this work proceeds, there are three constituent sources 
of raw measurements: 
• The double-differenced L1 C/A and L1/L2 carrier 

phase observations from a pair of GPS receivers 
for relative positioning (one static reference and 
one rover); 
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• Specific force observations from three 
accelerometers in a strapdown IMU; and 

• Angular rate observations from three gyroscopes 
in a strapdown IMU. 

Further, the system innovation vector is partitioned 
into three subvectors 

𝒅𝒅 = �𝒅𝒅𝒈𝒈𝑻𝑻 𝒅𝒅𝒔𝒔𝑻𝑻 𝒅𝒅𝑮𝑮𝑻𝑻�
𝑻𝑻

                               (2.8)  

where 𝒅𝒅𝒈𝒈 , 𝒅𝒅𝒔𝒔 , and 𝒅𝒅𝑮𝑮  correspond to the gyroscope, 
accelerometer, and GNSS observables at 𝑡𝑡𝑘𝑘+1 , 
respectively. 
 The design matrix is partitioned so as to separate 
the partitioned system state elements and to separate 
the observation types, as 

𝑪𝑪 = �
𝑪𝑪𝒈𝒈,𝒑𝒑 𝑪𝑪𝒈𝒈,𝒂𝒂 𝑪𝑪𝒈𝒈,𝝀𝝀 𝑪𝑪𝒈𝒈,𝑰𝑰𝑰𝑰𝑰𝑰
𝑪𝑪𝒔𝒔,𝒑𝒑 𝑪𝑪𝒔𝒔,𝒂𝒂 𝑪𝑪𝒔𝒔,𝝀𝝀 𝑪𝑪𝒔𝒔,𝑰𝑰𝑰𝑰𝑰𝑰
𝑪𝑪𝑮𝑮,𝒑𝒑 𝑪𝑪𝑮𝑮,𝒂𝒂 𝑪𝑪𝑮𝑮,𝝀𝝀 𝑪𝑪𝑮𝑮,𝑰𝑰𝑰𝑰𝑰𝑰

�           (2.9)  

 This partitioning allows for a finer identification of 
what quantities change or remain the same between 
different attitude models. Only 𝒙𝒙𝒂𝒂  has a different 
definition when changing the attitude model, so only 
𝑪𝑪𝒈𝒈,𝒂𝒂 , 𝑪𝑪𝒔𝒔,𝒂𝒂 , and 𝑪𝑪𝑮𝑮,𝒂𝒂  will potentially need to be 
redefined when changing the attitude model. 

2.2 Position System Model in the GMIS 
Regardless of the attitude model being used, the 

system model defining how the position changes 
through time should be consistent. For this research, we 
use a constant linear acceleration model as the system 
model for the change in linear position. This can be 
expressed as 

𝒙𝒙𝒑𝒑(𝑘𝑘 + 1) = �
𝑰𝑰𝟑𝟑 Δ𝑡𝑡𝑘𝑘+1𝑰𝑰𝟑𝟑

1
2
Δ𝑡𝑡𝑘𝑘+1𝑰𝑰𝟑𝟑

𝟎𝟎𝟑𝟑 𝑰𝑰𝟑𝟑 Δ𝑡𝑡𝑘𝑘+1𝑰𝑰𝟑𝟑
𝟎𝟎𝟑𝟑 𝟎𝟎𝟑𝟑 𝑰𝑰𝟑𝟑

� 𝒙𝒙𝒑𝒑(𝑘𝑘) +

⎣
⎢
⎢
⎢
⎡
1
6
Δ𝑡𝑡𝑘𝑘+13 𝑰𝑰𝟑𝟑

1
2
Δ𝑡𝑡𝑘𝑘+12 𝑰𝑰𝟑𝟑
Δ𝑡𝑡𝑘𝑘+1𝑰𝑰𝟑𝟑 ⎦

⎥
⎥
⎥
⎤

�̇�𝒂(𝑘𝑘) = 𝑨𝑨𝒑𝒑𝒙𝒙𝒑𝒑(𝑘𝑘) + 𝑩𝑩𝒑𝒑�̇�𝒂(𝑘𝑘)                   (2.10)

where �̇�𝒂(𝑘𝑘)  is the third-order motion process noise 
vector, or system jerk vector, expressed in the local 
ENU navigation frame. Modeling linear system motion 
in this frame ensures that its system model remains 
unaffected by the choice of attitude model. 

2.3 IMU Observation Equations 
     Before detailing the attitude model-specific IMU 
observation equations, it is important to establish the 
general IMU observation equations that will be adapted 
to each attitude model. In general, the gyroscope 
observations are modeled as 

𝝎𝝎𝒊𝒊𝒊𝒊
𝒊𝒊 = 𝝎𝝎𝒏𝒏𝒊𝒊

𝒊𝒊 − 𝒊𝒊𝒈𝒈 − 𝑺𝑺𝒈𝒈𝝎𝝎𝒊𝒊𝒊𝒊,𝒎𝒎𝒎𝒎𝒂𝒂𝒔𝒔
𝒊𝒊                       

                + 𝑪𝑪𝒏𝒏𝒊𝒊(𝝎𝝎𝒊𝒊𝒎𝒎
𝒏𝒏 + 𝝎𝝎𝒎𝒎𝒏𝒏

𝒏𝒏 ) + ∆𝝎𝝎𝒊𝒊𝒊𝒊
𝒊𝒊                         (2.11)  

where 𝝎𝝎𝒊𝒊𝒊𝒊
𝒊𝒊  denotes the gyro measurement vector of the 

angular rates of the body frame with respect to the 
inertial frame in the body frame, 𝒊𝒊𝒈𝒈  denotes the 
gyroscope bias vector, 𝑺𝑺𝒈𝒈 denotes the gyroscope scale 
factor error matrix, which is diagonal when not 
considering cross-coupling errors, 𝑪𝑪𝒏𝒏𝒊𝒊 denotes the three-
dimensional rotation matrix from the navigation frame 
to the body frame (note: do not confuse this with the 
design matrix C in (2.2) and (2.9)), 𝝎𝝎𝒊𝒊𝒎𝒎

𝒏𝒏  denotes the 
angular velocity of Earth with respect to the inertial 
frame, expressed in the navigation frame, 𝝎𝝎𝒎𝒎𝒏𝒏

𝒏𝒏  denotes 
the angular velocity of the navigation frame with 
respect to Earth in the navigation frame, and ∆𝝎𝝎𝒊𝒊𝒊𝒊

𝒊𝒊  is the 
noise vector. 

In general, the accelerometer specific force 
observations at 𝑡𝑡𝑘𝑘+1 are modeled as 

𝒇𝒇𝒊𝒊𝒊𝒊𝒊𝒊 = 𝑪𝑪𝒏𝒏𝒊𝒊𝒂𝒂 + 𝑪𝑪𝒏𝒏𝒊𝒊𝒈𝒈 − 𝒊𝒊𝒂𝒂 − 𝑺𝑺𝒂𝒂𝒇𝒇𝒊𝒊𝒊𝒊𝒊𝒊 + 𝑪𝑪𝒏𝒏𝒊𝒊{2𝝎𝝎𝒊𝒊𝒎𝒎
𝒏𝒏 + 𝝎𝝎𝒎𝒎𝒏𝒏

𝒏𝒏 } × 𝒗𝒗 + 𝑪𝑪𝒏𝒏𝒊𝒊𝝎𝝎𝒊𝒊𝒊𝒊
𝒊𝒊 × 𝝎𝝎𝒊𝒊𝒊𝒊

𝒊𝒊 × 𝒓𝒓                                                  
         = 𝑪𝑪𝒏𝒏𝒊𝒊𝒔𝒔 − 𝒊𝒊𝒂𝒂 − 𝑺𝑺𝒂𝒂𝒇𝒇𝒊𝒊𝒊𝒊,𝒎𝒎𝒎𝒎𝒂𝒂𝒔𝒔

𝒊𝒊 + ∆𝒇𝒇𝒊𝒊𝒊𝒊𝒊𝒊                                                                                                                   (2.12)  

 

where 𝒇𝒇𝒊𝒊𝒊𝒊𝒊𝒊  denotes the specific force of the body frame 
with respect to the inertial frame, expressed in the body 
frame, 𝒂𝒂 denotes the acceleration of the body frame at 
𝑡𝑡𝑘𝑘+1, expressed in the navigation frame, 𝒈𝒈 denotes the 
local gravity vector, expressed in the navigation frame; 
𝒗𝒗 denotes the velocity of the body frame, expressed in 
the navigation frame, 𝒓𝒓 denotes the lever arm vector for 
the IMU sensor in the body frame, ∆𝒇𝒇𝒊𝒊𝒊𝒊𝒊𝒊  is the noise 
vector, and 𝒔𝒔  is a helping parameter vector used in 

collecting like terms for 𝑪𝑪𝒏𝒏𝒊𝒊 , which is used in the 
subsequent sections. 
 In both (2.11) and (2.12), 𝑪𝑪𝒏𝒏𝒊𝒊  and 𝝎𝝎𝒏𝒏𝒊𝒊

𝒊𝒊  are not 
specific to any particular attitude representation, but 
could be calculated from the defining parameters of any 
attitude model. These equations therefore form the 
basis of the IMU observation models regardless of how 
the attitude is modeled. 
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3. ATTITUDE MODELS IN THE GMIS 

3.1 Roll-Pitch-Heading Formulation 

The roll-pitch-heading angles are three primitive 
parameters that uniquely represent the attitude of an 
object in 3D space. There are multiple equivalent ways 
to construct the attitude matrix from these angles. For 
instance, the attitude matrix from the navigation to the 
body frame used in this research is given as follows 

𝑪𝑪𝒏𝒏𝒊𝒊 = 𝑹𝑹𝟐𝟐(𝛼𝛼)𝑹𝑹𝟏𝟏(𝛽𝛽)𝑹𝑹𝟑𝟑(𝛾𝛾)                                     (3.1)  

where 𝛼𝛼 , 𝛽𝛽 , and 𝛾𝛾  are the system roll, pitch, and 
heading, respectively. The system’s angular velocities  
defined by their 1st order time derivatives (�̇�𝛼, �̇�𝛽, �̇�𝛾) are 
included in the system state vector so that one has 

𝒙𝒙𝒂𝒂 = [𝛼𝛼 𝛽𝛽 𝛾𝛾 �̇�𝛼 �̇�𝛽 �̇�𝛾]                               (3.2)  

 Under consideration that the attitude angles vary 
linearly with time, their second order time-derivatives 
( �̈�𝛼 , �̈�𝛽 , �̈�𝛾 ) define their associated process noise. The 
system model governing the attitude is therefore given 
as follows 

𝛼𝛼(𝑘𝑘 + 1) = 𝛼𝛼(𝑘𝑘) + �̇�𝛼(𝑘𝑘)Δ𝑡𝑡𝑘𝑘+1 +
1
2
�̈�𝛼(𝑘𝑘)Δ𝑡𝑡𝑘𝑘+12    (3.3)  

𝛽𝛽(𝑘𝑘 + 1) = 𝛽𝛽(𝑘𝑘) + �̇�𝛽(𝑘𝑘)Δ𝑡𝑡𝑘𝑘+1 +
1
2
�̈�𝛽(𝑘𝑘)Δ𝑡𝑡𝑘𝑘+12    (3.4)  

𝛾𝛾(𝑘𝑘 + 1) = 𝛾𝛾(𝑘𝑘) + �̇�𝛾(𝑘𝑘)Δ𝑡𝑡𝑘𝑘+1 +
1
2
�̈�𝛾(𝑘𝑘)Δ𝑡𝑡𝑘𝑘+12    (3.5)  

with Δ𝑡𝑡𝑘𝑘+1 = 𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘 , the associated transition 
matrix of 

  𝐀𝐀𝒂𝒂 = �𝑰𝑰𝟑𝟑 Δ𝑡𝑡𝑘𝑘+1𝑰𝑰𝟑𝟑
𝟎𝟎𝟑𝟑 𝑰𝑰𝟑𝟑

�                                            (3.6)  

and the process noise transition matrix of 

𝐁𝐁𝒂𝒂 = �
1
2
Δ𝑡𝑡𝑘𝑘+12 𝑰𝑰𝟑𝟑
Δ𝑡𝑡𝑘𝑘+1𝑰𝑰𝟑𝟑

�                                                 (3.7)  

After [Zhao, 2016], the differential equation relating 
𝝎𝝎𝒏𝒏𝒊𝒊
𝒊𝒊  and (�̇�𝛼, �̇�𝛽, �̇�𝛾) is given as 

𝝎𝝎𝒏𝒏𝒊𝒊
𝒊𝒊 = �

0 cos𝛼𝛼 sin𝛼𝛼 cos𝛽𝛽
1 − sin𝛽𝛽 0
0 sin𝛼𝛼 − cos𝛼𝛼 cos𝛽𝛽

� �
�̇�𝛼
�̇�𝛽
�̇�𝛾
�         (3.8) 

The substitution of (3.8) into (2.11) results in the 
following submatrix 

𝑪𝑪𝒈𝒈,𝒂𝒂 = �𝟎𝟎𝟑𝟑
0 cos𝛼𝛼 sin𝛼𝛼 cos𝛽𝛽
1 − sin𝛽𝛽 0
0 sin𝛼𝛼 − cos𝛼𝛼 cos𝛽𝛽

�           (3.9)  

It is hereby worth noting that the application of (3.8) in 
(3.9) and (2.11) is not possible for the singularity when 
𝛽𝛽 = ±90° , whereas such singularity is inseparable 
from the inertial measurements-based free dead 
reckoning calculation.  

The accelerometer observation equation remains 
unchanged when using the roll-pitch-heading attitude 
model, but has a modified design matrix of 

𝑪𝑪𝒔𝒔,𝒂𝒂 = �
𝜕𝜕𝑹𝑹𝟐𝟐(𝛼𝛼)
𝜕𝜕𝛼𝛼

𝑹𝑹𝟏𝟏(𝛽𝛽)𝑹𝑹𝟑𝟑(𝛾𝛾)𝒔𝒔 𝑹𝑹𝟐𝟐(𝛼𝛼)
𝜕𝜕𝑹𝑹𝟏𝟏(𝛽𝛽)
𝜕𝜕𝛽𝛽

𝑹𝑹𝟑𝟑(𝛾𝛾)𝒔𝒔    𝑹𝑹𝟏𝟏(𝛼𝛼)𝑹𝑹𝟐𝟐(𝛽𝛽)
𝜕𝜕𝑹𝑹𝟑𝟑(𝛾𝛾)
𝜕𝜕𝛾𝛾

𝒔𝒔 𝟎𝟎𝟑𝟑�                      (3.10)

3.2 Direction Cosine Matrix Formulation 

3.2.1 The DCM States 
In the DCM representation, the individual elements 

of the attitude matrix are each considered states and 
their first order time-derivatives are used to model their 
changes. This results in a total of 18 DCM states. 
Specifically, the rotation matrix from the navigation 
frame to the body frame is given in elements as follows 

𝑪𝑪𝒏𝒏𝒊𝒊 = �
𝑐𝑐11 𝑐𝑐12 𝑐𝑐13
𝑐𝑐21 𝑐𝑐22 𝑐𝑐23
𝑐𝑐31 𝑐𝑐32 𝑐𝑐33

�                                       (3.11)  

The portion of the system state vector that defines the 
attitude parameters may be expressed as 

𝒙𝒙𝒂𝒂 = [𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐 𝑪𝑪𝟑𝟑 �̇�𝑪𝟏𝟏 �̇�𝑪𝟐𝟐 �̇�𝑪𝟑𝟑]𝑇𝑇            (3.12)  

where 𝑪𝑪𝒊𝒊 = [𝑐𝑐𝑖𝑖1 𝑐𝑐𝑖𝑖2 𝑐𝑐𝑖𝑖3]  and �̇�𝑪𝒊𝒊 = [�̇�𝑐𝑖𝑖1 �̇�𝑐𝑖𝑖2 �̇�𝑐𝑖𝑖3] 
for i = 1, 2, 3. 

 The DCM states are considered to change linearly 
with time, with their second order time-derivatives 
defining the associated process noise. The kinematic 
model governing this attitude model is therefore given 
by the nine system equations 

𝑐𝑐𝑖𝑖𝑖𝑖(𝑘𝑘 + 1) = 𝑐𝑐𝑖𝑖𝑖𝑖(𝑘𝑘) + �̇�𝑐𝑖𝑖𝑖𝑖(𝑘𝑘)Δ𝑡𝑡𝑘𝑘+1 +
1
2
�̈�𝑐(𝑘𝑘)Δ𝑡𝑡𝑘𝑘+12 , 𝑖𝑖 ∈ (1,2,3), 𝑗𝑗 ∈ (1,2,3)                      (3.13)  

with the associated transition matrix of 

𝐀𝐀𝒂𝒂 �
𝑰𝑰𝟗𝟗 Δ𝑡𝑡𝑘𝑘+1𝑰𝑰𝟗𝟗
𝟎𝟎𝟗𝟗 𝑰𝑰𝟗𝟗

�                                   (3.14)  

and the process noise transition matrix of 

𝐁𝐁𝒂𝒂 = �
1
2
Δ𝑡𝑡𝑘𝑘+12 𝑰𝑰𝟗𝟗
Δ𝑡𝑡𝑘𝑘+1𝑰𝑰𝟗𝟗

�                                 (3.15)  

     The attitude parameters may be connected to 𝝎𝝎𝒏𝒏𝒊𝒊
𝒊𝒊  

via the Poisson equation [Salychev, 1998] 
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�̇�𝑪𝒏𝒏𝒊𝒊 = 𝑪𝑪𝒏𝒏𝒊𝒊�𝝎𝝎𝒏𝒏𝒊𝒊
𝒊𝒊 ×�                             (3.16)  

where [𝒗𝒗 ×]  denotes the skew-symmetric cross 
product matrix of a vector 𝒗𝒗. (3.16) can be rearranged 
to isolate  𝝎𝝎𝒏𝒏𝒊𝒊

𝒊𝒊  

�𝝎𝝎𝒏𝒏𝒊𝒊
𝒊𝒊 ×� = �𝑪𝑪𝒏𝒏𝒊𝒊�

𝑇𝑇
�̇�𝑪𝒏𝒏𝒊𝒊                                 (3.17)  

which yields 𝝎𝝎𝒏𝒏𝒊𝒊
𝒊𝒊  in components as 

𝝎𝝎𝒏𝒏𝒊𝒊
𝒊𝒊 = �

𝐶𝐶13�̇�𝐶12 + 𝐶𝐶23�̇�𝐶22 + 𝐶𝐶33�̇�𝐶32
𝐶𝐶11�̇�𝐶13 + 𝐶𝐶21�̇�𝐶23 + 𝐶𝐶31�̇�𝐶33
𝐶𝐶12�̇�𝐶11 + 𝐶𝐶22�̇�𝐶21 + 𝐶𝐶32�̇�𝐶31

�     (3.18)  

which can directly be used in (2.11). 

 The corresponding portion of the design matrix 
may then be redefined to be 

𝑪𝑪𝒈𝒈,𝒂𝒂 = �
0 0 �̇�𝑐12 0 0 �̇�𝑐22 0 0 �̇�𝑐32 0 𝑐𝑐13 0 0 𝑐𝑐23 0 0 𝑐𝑐33 0
�̇�𝑐13 0 0 �̇�𝑐23 0 0 �̇�𝑐33 0 0 0 0 𝑐𝑐11 0 0 𝑐𝑐21 0 0 𝑐𝑐31
0 �̇�𝑐11 0 0 �̇�𝑐21 0 0 �̇�𝑐31 0 𝑐𝑐12 0 0 𝑐𝑐22 0 0 𝑐𝑐32 0 0

�                (3.19)  

The accelerometer observation equations remain 
unchanged when using the DCM attitude model, but 
the redefinition of the rotation matrix leads the attitude 
portion of the design matrix to be redefined as 

𝑪𝑪𝒔𝒔,𝒂𝒂 = �
𝒔𝒔𝑻𝑻 𝟎𝟎𝟏𝟏,𝟑𝟑 𝟎𝟎𝟏𝟏,𝟑𝟑 𝟎𝟎𝟏𝟏,𝟗𝟗

𝟎𝟎𝟏𝟏,𝟑𝟑 𝒔𝒔𝑻𝑻 𝟎𝟎𝟏𝟏,𝟑𝟑 𝟎𝟎𝟏𝟏,𝟗𝟗

𝟎𝟎𝟏𝟏,𝟑𝟑 𝟎𝟎𝟏𝟏,𝟑𝟑 𝒔𝒔𝑻𝑻 𝟎𝟎𝟏𝟏,𝟗𝟗

�          (3.20)  

 

3.2.2 DCM State Constraints 

The attitude of a system in 3D space is sufficiently 
described using 3 functionally independent parameters, 
and the change of a system’s attitude is similarly 
described using 3 functionally independent parameters. 
This means 12 of the 18 chosen DCM states are 
redundant. This necessitates the inclusion of 12 
constraints on the DCM attitude states to avoid over-
parameterization. 

The first six equations are readily derived from the 
orthogonal property of an attitude matrix 

�
𝑪𝑪𝟏𝟏
𝑪𝑪𝟐𝟐
𝑪𝑪𝟑𝟑
� [𝑪𝑪𝟏𝟏𝑻𝑻 𝑪𝑪𝟐𝟐𝑻𝑻 𝑪𝑪𝟑𝟑𝑻𝑻] = 𝑰𝑰𝟑𝟑                          (3.21)  

of which the upper or lower triangular elements of the 
identity matrix in (3.21) leads to the six constraints: 

𝑪𝑪𝟏𝟏𝑪𝑪𝟏𝟏𝑻𝑻 = 1                                                  (3.22)  

𝑪𝑪𝟐𝟐𝑪𝑪𝟐𝟐𝑻𝑻 = 1                                                  (3.23)  

𝑪𝑪𝟑𝟑𝑪𝑪𝟑𝟑𝑻𝑻 = 1                                                  (3.24)  

𝑪𝑪𝟏𝟏𝑪𝑪𝟐𝟐𝑻𝑻 = 0                                                  (3.25)  

𝑪𝑪𝟏𝟏𝑪𝑪𝟑𝟑𝑻𝑻 = 0                                                  (3.26)  

𝑪𝑪𝟐𝟐𝑪𝑪𝟑𝟑𝑻𝑻 = 0                                                  (3.27)  

 Similarly, dealing with the 6 remaining redundant 
states among the 9 time-derivatives of the DCM states 
further requires the construction of 6 additional 
constraints. There are two strategies to defining these 
additional constraints: 

1) Enforcing that the matrix product in the 
rearranged Poisson Equation in (3.17) is a skew-
symmetric matrix (i.e. diagonal elements should 
be 0 and the sum of an off-diagonal element with 
its transpose should be 0); or 

2) Using the time-derivatives of the constraint 
equations from (3.22) to (3.27). 

It can be proven that no matter which strategy is 
used, the same six additional constraints are derived: 

𝑪𝑪𝟏𝟏�̇�𝑪𝟏𝟏𝑻𝑻 = 0                                                    (3.28)  

𝑪𝑪𝟐𝟐�̇�𝑪𝟐𝟐𝑻𝑻 = 0                                                    (3.29)  

𝑪𝑪𝟑𝟑�̇�𝑪𝟑𝟑𝑻𝑻 = 0                                                   (3.30)  

𝑪𝑪𝟏𝟏�̇�𝑪𝟐𝟐𝑻𝑻 + �̇�𝑪𝟏𝟏𝑪𝑪𝟐𝟐𝑻𝑻 = 0                                   (3.31)  

𝑪𝑪𝟏𝟏�̇�𝑪𝟑𝟑𝑻𝑻 + �̇�𝑪𝟏𝟏𝑪𝑪𝟑𝟑𝑻𝑻 = 0                                   (3.32)  

𝑪𝑪𝟐𝟐�̇�𝑪𝟑𝟑𝑻𝑻 + �̇�𝑪𝟐𝟐𝑪𝑪𝟑𝟑𝑻𝑻 = 0                                   (3.33)  

 Together, the 12 constraints from (3.22) to (3.33) 
are necessary to eliminate the functional singularity due 
to the use of 12 redundant DCM states. As all the 
constraint equations are non-linear, their linearized 
coefficient matrix (i.e. the partial derivatives of the 
constraint equations with respect to the state elements) 
is estimated as 

𝑯𝑯𝑫𝑫𝑪𝑪𝑰𝑰,𝒂𝒂 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
2𝑪𝑪𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 2𝑪𝑪𝟐𝟐 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 2𝑪𝑪𝟑𝟑 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝑪𝑪𝟐𝟐 𝑪𝑪𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝑪𝑪𝟑𝟑 𝟎𝟎 𝑪𝑪𝟏𝟏 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝑪𝑪𝟑𝟑 𝑪𝑪𝟐𝟐 𝟎𝟎 𝟎𝟎 𝟎𝟎
�̇�𝑪𝟏𝟏 𝟎𝟎 𝟎𝟎 𝑪𝑪𝟏𝟏 𝟎𝟎 𝟎𝟎
𝟎𝟎 �̇�𝑪𝟐𝟐 𝟎𝟎 𝟎𝟎 𝑪𝑪𝟐𝟐 𝟎𝟎
𝟎𝟎 𝟎𝟎 �̇�𝑪𝟑𝟑 𝟎𝟎 𝟎𝟎 𝑪𝑪𝟑𝟑
�̇�𝑪𝟐𝟐 �̇�𝑪𝟏𝟏 𝟎𝟎 𝑪𝑪𝟐𝟐 𝑪𝑪𝟏𝟏 𝟎𝟎
�̇�𝑪𝟑𝟑 𝟎𝟎 �̇�𝑪𝟏𝟏 𝑪𝑪𝟑𝟑 𝟎𝟎 𝑪𝑪𝟏𝟏
𝟎𝟎 �̇�𝑪𝟑𝟑 �̇�𝑪𝟐𝟐 𝟎𝟎 𝑪𝑪𝟑𝟑 𝑪𝑪𝟐𝟐⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(3.34)  

where in practice, (3.34) is evaluated using the latest 
estimated DCM states. 



85 
 

3.3 Quaternion Formulation 

3.3.1 Quaternion States 

A rotation quaternion is be defined as 

𝑞𝑞 = 𝑞𝑞0 + 𝒒𝒒 = 𝑞𝑞0 + 𝑞𝑞1𝒊𝒊 + 𝑞𝑞2𝒋𝒋 + 𝑞𝑞3𝒌𝒌         (3.35) 

with the four parameters (𝑞𝑞0, 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3). This has been 
the most preferable formulation of the attitude in the 
inertial navigation algorithm so far. The time 
derivatives of these four parameters are used to model 
the change of a system’s attitude. Here, a total of 8 
attitude states are chosen. Accordingly, the attitude 
matrix from the navigation frame to the body frame is 
expressed as follows [Zhang and Sun, 1992] 

𝑪𝑪𝒏𝒏𝒊𝒊 = (𝑞𝑞02 − |𝒒𝒒|2)𝑰𝑰𝟑𝟑 − 2𝑞𝑞0[𝒒𝒒] + 2𝒒𝒒𝒒𝒒𝑻𝑻         (3.36)  

 The subvector that describes the attitude states for 
the quaternion model is expressed as 

         𝒙𝒙𝒂𝒂 = [𝑞𝑞0 𝒒𝒒𝑻𝑻 �̇�𝑞0 �̇�𝒒𝑻𝑻]𝑇𝑇                              (3.37)  

 Applying the same principles here as in Sections 
3.1 and 3.2, the quaternion attitude states are 
considered to change linearly with time, accompanied 
by process noise defined by their second order time-
derivatives. The kinematic model governing this 
attitude model is therefore given as follows 

𝑞𝑞𝑖𝑖(𝑘𝑘 + 1) = 𝑞𝑞𝑖𝑖(𝑘𝑘) + �̇�𝑞𝑖𝑖(𝑘𝑘)Δ𝑡𝑡𝑘𝑘+1                       
               𝑖𝑖 ∈ (0, 1, 2, 3)                                      (3.38)  

with an associated transition matrix of 

  𝐀𝐀𝒂𝒂 = �𝑰𝑰𝟒𝟒 Δ𝑡𝑡𝑘𝑘+1𝑰𝑰𝟒𝟒
𝟎𝟎𝟒𝟒 𝑰𝑰𝟒𝟒

�                                     (3.39)  

and an associated 𝚪𝚪 matrix of 

𝐁𝐁𝒂𝒂 = �
1
2
Δ𝑡𝑡𝑘𝑘+12 𝑰𝑰𝟒𝟒
Δ𝑡𝑡𝑘𝑘+1𝑰𝑰𝟒𝟒

�                                        (3.40)  

The connection between the attitude and the change 
of the quaternion vector is given via the Poisson 
Equation in (3.16) 

�̇�𝑞 =
1
2
�

𝑞𝑞0 −𝑞𝑞1 −𝑞𝑞2 −𝑞𝑞3
𝑞𝑞1 𝑞𝑞0 −𝑞𝑞3 𝑞𝑞2
𝑞𝑞2 𝑞𝑞3 𝑞𝑞0 −𝑞𝑞1
𝑞𝑞3 −𝑞𝑞2 𝑞𝑞1 𝑞𝑞0

� �
0
𝝎𝝎𝒏𝒏𝒊𝒊
𝒊𝒊 �          (3.41)  

from which  𝝎𝝎𝒏𝒏𝒊𝒊
𝒊𝒊  is explicitly expressed as follows 

𝝎𝝎𝒏𝒏𝒊𝒊
𝒊𝒊 = 2 �

−𝑞𝑞1 𝑞𝑞0 𝑞𝑞3 −𝑞𝑞2
−𝑞𝑞2 −𝑞𝑞3 𝑞𝑞0 𝑞𝑞1
−𝑞𝑞3 𝑞𝑞2 −𝑞𝑞1 𝑞𝑞0

� �̇�𝑞                        

       = 2𝑾𝑾(𝑞𝑞)�̇�𝑞                                                  (3.42)
 

 Substituting (3.42) into (2.11) yields the following 
design submatrix 

𝑪𝑪𝒈𝒈,𝒂𝒂 = �
𝟎𝟎𝟏𝟏,𝟒𝟒 −𝟐𝟐𝒒𝒒𝟏𝟏 𝟐𝟐𝒒𝒒𝟎𝟎 𝟐𝟐𝒒𝒒𝟑𝟑 −𝟐𝟐𝒒𝒒𝟐𝟐
𝟎𝟎𝟏𝟏,𝟒𝟒 −𝟐𝟐𝒒𝒒𝟐𝟐 −𝟐𝟐𝒒𝒒𝟑𝟑 𝟐𝟐𝒒𝒒𝟎𝟎 𝟐𝟐𝒒𝒒𝟏𝟏
𝟎𝟎𝟏𝟏,𝟒𝟒 −𝟐𝟐𝒒𝒒𝟑𝟑 𝟐𝟐𝒒𝒒𝟐𝟐 −𝟐𝟐𝒒𝒒𝟏𝟏 𝟐𝟐𝒒𝒒𝟎𝟎

�(3.43) 

 The accelerometer observation equations remain 
unchanged as in the derivation of (3.10), but the 
corresponding sub design matrix must be redefined for 
the quaternion states using the partial derivatives of the 
attitude matrix with respect to each of its elements: 

𝜕𝜕𝑪𝑪𝒏𝒏𝒊𝒊

𝜕𝜕𝑞𝑞0
= 2𝑞𝑞0𝑰𝑰𝟑𝟑 − 2[𝒒𝒒]                                      (3.44)  

𝜕𝜕𝑪𝑪𝒏𝒏𝒊𝒊

𝜕𝜕𝑞𝑞1
=  −2𝑞𝑞1𝑰𝑰𝟑𝟑 − 2𝑞𝑞0 �

0 0 0
0 0 −1
0 1 0

�                        

                   +2 �
2𝑞𝑞1 𝑞𝑞2 𝑞𝑞3
𝑞𝑞2 0 0
𝑞𝑞3 0 0

�                        (3.45)  

𝜕𝜕𝑪𝑪𝒏𝒏𝒊𝒊

𝜕𝜕𝑞𝑞2
=  −2𝑞𝑞2𝑰𝑰𝟑𝟑 − 2𝑞𝑞0 �

0 0 1
0 0 0
−1 0 0

�                       

                +2 �
0 𝑞𝑞1 0
𝑞𝑞1 2𝑞𝑞2 𝑞𝑞3
0 𝑞𝑞3 0

�                         (3.46)  

𝜕𝜕𝑪𝑪𝒏𝒏𝒊𝒊

𝜕𝜕𝑞𝑞3
=  −2𝑞𝑞3𝑰𝑰𝟑𝟑 − 2𝑞𝑞0 �

0 −1 0
1 0 0
0 0 0

�                 

                          +2 �
0 0 𝑞𝑞1
0 0 𝑞𝑞2
𝑞𝑞1 𝑞𝑞2 2𝑞𝑞3

�                (3.47)  

 Using the partial derivatives defined from (3.44) to 
(3.47), the portion of the design matrix for the 
accelerometer measurements that refers to the attitude 
parameters may be redefined as 

 𝑪𝑪𝒔𝒔,𝒂𝒂 = �𝜕𝜕𝑪𝑪𝒏𝒏
𝒊𝒊

𝜕𝜕𝑞𝑞0
𝒔𝒔 𝜕𝜕𝑪𝑪𝒏𝒏𝒊𝒊

𝜕𝜕𝑞𝑞1
𝒔𝒔 𝜕𝜕𝑪𝑪𝒏𝒏𝒊𝒊

𝜕𝜕𝑞𝑞2
𝒔𝒔   𝜕𝜕𝑪𝑪𝒏𝒏

𝒊𝒊

𝜕𝜕𝑞𝑞3
𝒔𝒔 𝟎𝟎𝟒𝟒�   (3.48) 

3.3.2 Quaternion State Constraints 

The use of 8 quaternion states implies 2 redundant 
states, which require 2 state constraints to overcome the 
over-parameterization issue. 

The first quaternion state constraint comes from the 
definition of a rotation quaternion: 

𝑞𝑞𝑞𝑞∗ = 𝑞𝑞02 + |𝒒𝒒|2 = 1                               (3.49)  

Moreover, as (3.49) should remain constant through 
time, its time first order derivative should be equal to 0, 
which yields the second constraint on the change of the 
quaternion: 

𝑞𝑞0�̇�𝑞0 + 𝑞𝑞1�̇�𝑞1 + 𝑞𝑞2�̇�𝑞2 + 𝑞𝑞3�̇�𝑞3 = 0           (3.50)  

 After their linearization, the coefficient matrix of 
the linearized constraints is as 
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𝑯𝑯𝒒𝒒,𝒂𝒂 = �2𝑞𝑞0 2𝑞𝑞1 2𝑞𝑞2 2𝑞𝑞3
�̇�𝑞0 �̇�𝑞1 �̇�𝑞2 �̇�𝑞3

                           

                   0 0 0 0
𝑞𝑞0 𝑞𝑞1 𝑞𝑞2 𝑞𝑞3

�                   (3.51)  

where in practice, (3.51) is realized using the most 
recently estimated quaternion states. 

4. COMPREHENSIVE ERROR 
ANALYSIS 

To estimate the residuals of the process noise and 
observation vectors the framework of the system state-
constrained KF is applied [Wang et al, 2022]. 

 The update of the state vector using the nonlinear 
constraints from Sections 3.2.2 and 3.3.2 is as follows 
[Wang et al, 2022]: 

𝒙𝒙𝒉𝒉(𝑘𝑘 + 1) = 𝒙𝒙(𝑘𝑘 + 1) −                                                 

−𝑫𝑫𝒙𝒙𝒙𝒙(𝑘𝑘 + 1)𝑯𝑯(𝑘𝑘 + 1)�𝑯𝑯(𝑘𝑘 + 1)𝑫𝑫𝒙𝒙𝒙𝒙(𝑘𝑘 + 1)𝑯𝑯𝑻𝑻(𝑘𝑘 + 1)�−𝟏𝟏

                          �𝑯𝑯�𝒙𝒙(𝑘𝑘|𝑘𝑘)� − 𝒉𝒉(𝑘𝑘 + 1)�                             (4.2)
 

where 𝒙𝒙𝒉𝒉(𝑘𝑘 + 1) denotes the constrained KF solution 
at time 𝑡𝑡𝑘𝑘+1 , and 𝑫𝑫𝒙𝒙𝒙𝒙(𝑘𝑘 + 1)  denotes the covariance 
matrix for the unconstrained solution at time 𝑡𝑡𝑘𝑘+1. 

 The framework of the EKF formulation in [Wang 
et al, 2022] allows for the additional calculation of 
constrained system state, process noise, and 
observation residual vectors, as 

𝒗𝒗𝒉𝒉𝒙𝒙 = 𝒗𝒗𝒙𝒙 −                                                                             
          𝐀𝐀𝑫𝑫𝒙𝒙𝒙𝒙𝚽𝚽𝑻𝑻(𝑰𝑰 − 𝑮𝑮𝑪𝑪)𝑻𝑻𝑯𝑯𝑻𝑻(𝑯𝑯𝑫𝑫𝒙𝒙𝒙𝒙𝑯𝑯𝑻𝑻)−𝟏𝟏𝒉𝒉      (4.3)  

  𝒗𝒗𝒉𝒉𝒘𝒘 = 𝒗𝒗𝒘𝒘 −                     

     𝑸𝑸𝐁𝐁𝑻𝑻(𝑰𝑰 − 𝑮𝑮𝑪𝑪)𝑻𝑻𝑯𝑯𝑻𝑻(𝑯𝑯𝑫𝑫𝒙𝒙𝒙𝒙𝑯𝑯𝑻𝑻)−𝟏𝟏𝒉𝒉               (4.4)  

and 

𝒗𝒗𝒉𝒉𝒛𝒛 = 𝒗𝒗𝒛𝒛 − 𝑪𝑪𝑫𝑫𝒙𝒙𝒙𝒙𝑯𝑯𝑻𝑻(𝑯𝑯𝑫𝑫𝒙𝒙𝒙𝒙𝑯𝑯𝑻𝑻)−𝟏𝟏𝒉𝒉                       (4.5)  

where 𝒗𝒗𝒄𝒄𝒙𝒙 , 𝒗𝒗𝒄𝒄𝒘𝒘 , and 𝒗𝒗𝒄𝒄𝒛𝒛  are the residual vectors 
corresponding to the predicted system state, the process 
noise and observation vectors after the constraints are 
applied, respectively; 𝑮𝑮  denotes the Kalman Gain 
matrix; 𝑸𝑸 denotes the covariance matrix for the process 
noise vector; and 𝒉𝒉 is the misclosure of the constraint 
equations. 

 As our focus is on using these quantities to 
characterize performance of different attitude models, it 
is important to clarify several things with respect to 
their meaning and significance. Each of these residual 
vectors represent one of the three independent sources 
of error in a Kalman Filter at a specific time instant: 
estimated error in the measurements (observation 
residuals); estimated error in the kinematic models 
(process noise residuals); and error in the predicted 

system state vector (impacted by all the accumulated 
errors from the past). The residual vectors in (4.3), (4.4) 
and (4.5) are least-squares estimates and are 
statistically independent from one epoch to the next. 

 Since changing the attitude model primarily affects 
the system and measurement models, the performance 
of the process noise and observation residuals for each 
attitude model are particularly informative of each 
model’s performance subject to our GMIS [Wang et al, 
2015; Qian et al, 2015]. The EKF framework for 
comprehensive error analysis [Wang, 1997, 2008, 2009; 
Wang et al, 2022] is very well-suited for such analysis. 

It is quite common to analyse the residuals of the 
double-differenced GNSS measurements. Unique to 
this research, the residuals of the raw IMU 
measurement vector and the system process noise 
vector are made available under the combination of our 
GMIS with the framework for comprehensive error 
analysis in KF. Particularly, the residuals of the gyro 
and accelerometer measurements are more indicative of 
the performance of each attitude model when drawing 
comparisons due to their connection to the system 
attitude. Similarly, the process noise residual vector has 
components that refer to the system jerk vector (i.e. 
third order time-derivative of the position vector) and 
the second time-derivative of the system’s attitude-
related states. The latter is more directly indicative of 
the system models associated with each attitude model.  

 Of particular importance is that the residual vectors 
could be used to conduct Variance Component 
Estimation (VCE). This involves taking the quadratic 
form 𝒗𝒗𝒊𝒊𝑻𝑻𝑫𝑫𝒗𝒗𝒊𝒊𝒗𝒗𝒊𝒊

−𝟏𝟏 𝒗𝒗𝒊𝒊  for a set of residual values and 
normalizing by their contribution to the overall degrees 
of freedom (DOF) of the Kalman Filter system. This 
DOF contribution is calculated [Forstner, 1979;  Wang, 
2009] as follows 

𝐷𝐷𝐷𝐷𝐹𝐹𝑖𝑖 = tr�𝑫𝑫𝒗𝒗𝒊𝒊𝒗𝒗𝒊𝒊𝑫𝑫𝒍𝒍𝒊𝒊𝒍𝒍𝒊𝒊
−𝟏𝟏�                                 (4.6)  

where 𝑫𝑫𝒗𝒗𝒊𝒊𝒗𝒗𝒊𝒊  denotes the covariance matrix for the 
residual vector 𝒗𝒗𝒊𝒊 a variance factor is being calculated 
for, and 𝑫𝑫𝒍𝒍𝒊𝒊𝒍𝒍𝒊𝒊 denotes the a priori covariance matrix for 
the corresponding the observation vector 𝒍𝒍𝒊𝒊. 

 Generally, the estimated variance components 
provide information for improving the a priori 
stochastic model based on the posteriori residuals and 
the redundancy contribution of measurements in 
Kalman filtering. In practice, this extends to all three 
independent error sources in the KF, and it is desirable 
to define subsets of the residual vectors so as to provide 
the most meaningful results with VCE. In this paper, 
the focus is primarily on the process noise/observation 
variance components, with the following sets of 
variance components calculated: 
For the process noise residuals: 
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a. An overall variance component accounting for the 
entire process noise vector, which is used to 
provide an overall overview of the performance of 
the system model in Kalman filtering; and 

b. Separate variance components accounting for all 
orientation-related elements and all position-
related elements in the process noise vector. This 
may provide more granular information about the 
performance of each specific part of the system 
model. 

For the measurement residuals: 
a. An overall variance component accounting for the 

entire observation vector. This provides 
information about the overall performance of the 
measurement models from each attitude model 
being used. 

b. Separate variance components dedicated to 
characterizing the performance of the raw 
gyroscope and accelerometer measurements. This 
is an essential innovation achieved by the 
combination of our GMIS with the framework of 
comprehensive error analysis in Kalman filtering 
as it is not feasible in the existing traditional 
inertial-aided integrated navigation.  

c. A variance component accounting for the GNSS-
related DD observation vector. Moreover, the 
variance of unit weight for each of L1 C/A, L1 
Carrier Phase and L2 Carrier Phase measurements. 

One limitation that is important to take into account 
when conducting VCE for a KF application is in the 
overall DOF for each subset of the residual vectors. 
Generally, a KF has a total DOF that is equal to the 
number of observations recorded plus the number of 
system state constraints at an epoch. The sum of the 
DOF contributions of the system state vector, process 
noise vector, and observation vector yields the overall 
DOF of the system for any given epoch. These 
redundancy contributions are not distributed uniformly 
among these (pseudo) observation elements. In VCE, a 
significantly small DOF (i.e., the redundancy index) 
may lead to an unreliable estimate of the associated 
variance component, as the estimated process noise 
typically comes with a low redundancy contribution 
[Wang et al, 2009]. This necessitates estimating 
variance components over a time interval, rather than 
epoch-wise, thereby increasing the reliability of the 
variance component. At the same time, conducting 
VCE over a specified time interval may reduce its time-
domain resolution. Practically speaking, epoch-wise 
residuals reflect more identifiable “spikes” when there 
are problems in the system model and/or measurements. 

5. COMPARATIVE ANALYSIS 

5.1 General Attitude Model Performance 

This section presents the results from a fifteen-
minute-long kinematic dataset collected from a land 
vehicle equipped with our in-house developed 
integrated navigation system with an IMU 440 sensor 
operating at 100 Hz and a NovAtel OEM4 receiver 
operating at 1 Hz while a second NovAtel receiver was 
operated at a fixed location as a base station. The a 
priori standard deviation of the accelerometers was 0.1 
m/s2, and the a priori standard deviation of the gyros 
was 0.8 °/s. The vehicle stayed in stationary for the first 
7.5 minutes and was then driven in kinematic for 
another 7.5 minutes. The horizontal trajectory of the 
land vehicle is shown in Fig. 5.1, and the velocity and 
acceleration profiles are shown in Fig. 5.2 and 5.3, 
respectively. 

 
Fig. 5.1: Horizontal trajectory of the kinematic dataset used in 

this research. Note that coordinates are local geodetic 
coordinates relative to the starting location 

 
Fig. 5.2: System velocity profile of the kinematic dataset. 

Velocities expressed in the navigation frame local 
geodetic coordinates. 
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Fig. 5.3: System acceleration profile for the kinematic dataset. 

Accelerations expressed in the navigation frame local 
geodetic coordinates. 

After the GMIS, each of the three proposed attitude 
models was implemented to process the test data. Then, 
comprehensive error analysis was directly applied to 
compare their solution performance. Specifically, the 
comparison is focused on: 

1) Direct comparison of the state estimates. This is 
realized through the RMSE between different 
position/attitude estimates to provide a sense of 
consistency between the three different attitude 
models. 

2) Direct comparison of the posteriori residuals and 
also the posteriori variance components to provide 
insight into the accuracy of each solution, and 
characterize the differences through the error 
behaviors in the system model and measurements 
while using different attitude models. 

A summary of the RMSE between the kinematic 
portion of the position estimates using each attitude 
model is provided in Table 1. For the Roll-Pitch-
Heading (RPH) model, the average standard deviation 
estimated for the position was 4.48 cm in the horizontal 
and 6.69 cm in the vertical; for the DCM model, the 
average estimated position standard deviation was 4.65 
cm in the horizontal and 6.91 cm in the vertical; for the 
quaternion model, the average estimated position was 
4.76 cm in the horizontal and 6.86 cm in the vertical. 
The estimated RMSE values between the different 
solutions are consistent with these estimated standard 
deviations. 
Tab. 1: RMSE between the 3D positioning estimates for each 

attitude model, in cm. These values were calculated 
using only the kinematic portion of the dataset. 

 RPH DCM Quaternion 

RPH 0 4.57 3.84 

DCM  0 3.95 

Quaternion   0 

 A summary of the RMSE between the kinematic 
portion of the attitude estimates using each attitude 

model is provided in Table 2. To realize this analysis, 
the DCM and quaternion solutions were converted to 
their equivalent RPH representation to directly compare 
the attitude estimates. For the RPH model, the average 
standard deviation for the attitude was 0.11° in the roll 
and pitch and 0.34° in the heading; for the DCM model, 
the average estimated attitude standard deviation was 
0.12° in the roll and pitch and 0.36° in the heading; for 
the quaternion model, the average estimated attitude 
standard deviation was 0.11° in the roll and pitch and 
0.32 °  in the heading. The estimated RMSE values 
between the different solutions are consistent with 
these estimated standard deviations. 
Tab. 2: RMSE between the attitude estimates for each attitude 

model [arcmin]. These values were calculated by 
converting to the equivalent RPH representation for the 
kinematic portion of each dataset. 

 RPH DCM Quaternion 

RPH 0 21.8 21.2 

DCM  0 28.3 

Quaternion   0 

 The RMSE between different attitude models 
suggests that these attitude models may be used 
interchangeably, disregarding software efficiency needs 
and degenerate cases (i.e. Gimbal Lock).  

 Analysing RMSE values between the three 
different attitude models is important when 
characterizing their performance to establish 
consistency between the models. Additional 
information may be gleaned from the estimated 
variance components when using each attitude model. 

 The variance components were estimated using the 
residuals of the observation and process noise vectors. 
The measurement residuals are shown in Fig. 5.4 for 
the three gyros’ measurements, Fig. 5.5 for three 
accelerometers, Fig. 5.6, Fig. 5.7 and Fig. 5.8 show the 
measurement residuals for the GPS L1 C/A, L1 carrier 
phase and L2 carrier phase measurements, respectively. 

     Again, the IMU measurement residuals in Fig. 5.4 
and 5.5 are only possible through using the GMIS, and 
would not be possible to estimate under the traditional 
integration strategy. These residuals are necessary to 
estimate any observation variance components, which 
is central to this comparative analysis. The histograms 
of each standardized set of residuals corresponding to 
individual measurements are shown in Fig. 5.9 to 5.13. 

As can be seen from the histograms, all of these 
residuals appear reasonably well-behaved as random 
errors, which suggests that each of the attitude models 
is valid and performing well over the dataset.  
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Fig. 5.4: Gyroscope residuals for each attitude model. 

 
Fig. 5.5: Accelerometer residuals for each attitude model. 

 
Fig. 5.6: L1 code residuals for each attitude model. 

 
Fig. 5.7: L1 carrier phase residuals for each attitude model. 

 
Fig. 5.8: L2 carrier phase residuals for each attitude model. 

 
Fig. 5.9: Histogram of L1 C/A standardized residuals. Standard 

normal distribution superimposed for reference. 

 
Fig. 5.10: Histogram of L1 carrier phase standardized residuals. 

Standard normal distribution superimposed for 
reference. 

There are noticeable spikes near zero in both the 
gyroscope and accelerometer residual histograms in Fig. 
5.12 and 5.13. These are largely from portions of the 
dataset where the system was moving with near-
constant velocity. 
 The components of the process noise residual 
vector are shown in Fig. 5.14 and 5.15, with their 
associated histograms shown from Fig. 5.16 to 5.19. In 
general, the residuals of the jerk vector (Fig. 5.14 and 
16) appear to behave quite well for all three models, as 
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do the residuals of the attitude process noise vector in 
Fig. 5.15, and 17 - 19. 

 
Fig. 5.11: Histogram of L2 carrier phase standardized residuals. 

Standard normal distribution superimposed for 
reference. 

 
Fig. 5.12: Histograms of gyroscope standardized residuals. 

Standard normal distribution superimposed for 
reference. 

 
Fig. 5.13: Histogram of accelerometer standardized residuals. 

Standard normal distribution superimposed for 
reference. 

 As was the case with the IMU measurement 
residual histograms, the system jerk histograms in Fig. 
5.16 exhibit strong spikes near zero, which again 

coincides with times when the system was moving at a 
near-constant velocity. In general, it is reasonable to 
expect process noise to have different stochastic 
properties under different dynamic conditions. 

 
Fig. 5.14: Residuals of system jerks (process noises). 

 
Fig. 5.15: Estimated process noise residuals for the attitude 

parameters. Each colour represents a different 
second-order time derivative of a different parameter 
in the associated attitude model. 

     From the histograms in Fig. 5.17 to 5.19, it is clear 
that the process noise estimates for attitude parameters 
related to the system heading have a much broader 
range of values than for other attitude parameters not 
related to the system heading. This is due to the fact 
that the dataset was collected from a land vehicle, and 
the pitch/roll of the system did not change much over 
the course of the entire kinematic dataset. For example, 
change in system heading may be represented as a 
rotation about the z-axis for an approximately level 
vehicle. Elements 𝐶𝐶11 , 𝐶𝐶12 , 𝐶𝐶21 , and 𝐶𝐶22  of the DCM 
model all change significantly with rotation about the 
z-axis, but the other attitude parameters do not change 
significantly. Similarly, 𝑞𝑞0 varies with the overall angle 
of rotation and 𝑞𝑞3 varies with rotation about the z-axis, 
but 𝑞𝑞1  and 𝑞𝑞2  do not change significantly as the 
heading changes. 
     All variance factors (their individual variances of 
unit weight) were regionally estimated over a moving 
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time period of 20 seconds. This time period could be 
increased to provide a more accurate sense of overall 
performance for each variance component or decreased 
to provide a more precise estimate of when issues in the 
positioning solution arise. All plots display the standard 
error, which is the square root of the estimated variance 
of unit weight. 

 
Fig. 5.16: Histogram of system jerk process noise residuals. 

 
Fig. 5.17: Histogram of attitude process noise for the RPH 

attitude model. 

 
Fig. 5.18: Histogram of attitude process noise for the DCM 

attitude model. 

 
Fig. 5.19: Histogram of attitude process noise for the quaternion 

attitude model. 

 The overall global posteriori observation standard 
error plots are shown in Fig. 5.20, and the estimated 
overall process noise standard error plots are shown in 
Fig. 5.21. 

The estimated standard error for both observations 
and process noise are very consistent between the 
different attitude models. These plots feature much 
lower values towards the beginning and the end of the 
dataset, when the positioning system was stationary. 
This is to be expected for the process noise since the 
process noise represents the higher-order motion of the 
system, which should be zero for a stationary system. It 
also makes sense for the observations, since their 
quality when stationary is not confounded by 
systematic errors from the system’s motion (for 
example, vibration of the sensors). 
     Overall, the shape of each plot in Fig. 5.14 and 5.15 
are very similar; the positioning/orientation KF 
responds similarly for each attitude model, with only 
relatively minor discrepancies between their estimated 
standard errors. 
 The average estimated observation standard errors 
associated with each attitude model are summarized in 
Table 3. This table includes the overall estimated 
standard error components for IMU gyro, IMU 
accelerometer, and GPS observations. Table 4 shows 
both the a priori and a posteriori estimates of each 
observation type’s accuracy for each attitude model. 
All attitude models used the same a priori estimates of 
the observation accuracy. 

Overall, the posteriori standard errors are very 
consistent between different attitude models (Table 4). 
All observation standard error components of unit 
weight converge to approximately 1 (Table 3), which 
indicates that observation accuracies were properly 
tuned and that there are no issues in the relative 
weighting between different observation types. 
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Fig. 5.20: The standard error plots for the observation residual 

vector in the RPH, DCM, and Quaternion attitude 
models (moving window: 20s) 

 
Fig. 5.21: The standard error plots for the process noise 

residual vector in each attitude model 
(moving window: 20s) 

 

Tab. 3: Overall estimated standard errors of unit weight for each type of measurements, and for all observations 
together associated with each of the attitude models. Each standard error of unit weight was evaluated 
solely over the mobile period of the dataset. 

Standard Errors of Unit Weight (𝝈𝝈�𝟎𝟎) 

Attitude 
Model Accelerometer Gyroscope L1 

C/A 
Carrier Phase 

Overall 
L1 L2 

RPH 1.0154 1.0132 1.0255 1.0236 0.9955 1.0026 

DCM 0.9613 1.0097 1.0256 1.0512 1.0032 0.9966 

Quaternion 0.9646 0.9921 1.0254 1.0601 0.9648 0.9789 
Tab. 4: Overall estimated a priori and a posteriori standard deviations for each type of measurement. A 

posteriori standard deviations were estimated by scaling the a priori standard deviation estimate by the 
standard error of unit weight provided in Table 3. 

 A Posteriori Standard Deviations  

 Accelerometer 
[m/s2] 

Gyroscope 
[o/s] 

L1 C/A 
[m] 

Carrier Phase [cm] 

L1 L2 

RPH 0.102 0.811 0.513 0.512 0.498 

DCM 0.096 0.808 0.513 0.526 0.502 

Quaternion 0.096 0.794 0.513 0.530 0.482 

 
Comparing the absolute a posteriori standard 

deviations of each observation type for each attitude 
model in Table 4 makes it clear that they are very 
compatible with one another.  
The global posteriori process noise standard errors of 
unit weight for each attitude model are summarized in 
Table 5. This table includes the average estimated 
variance components for the system jerk (i.e. third-
order linear motion) and the second time-derivatives 
of the attitude parameters. Table 6 shows the a priori 

and a posteriori estimates of the accuracies of the 
position and attitude process noise components. 

As with the observation variance components, the 
estimated standard error components for the process 
noise elements converge to approximately 1. This 
suggests that the a priori estimates of the process 
noise components are consistent with their a posteriori 
estimates. 
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Tab. 5: Overall estimated standard errors of unit weight for each process noise component related to the motion in the system. Note that 
components related to the wander of IMU systematic errors and GPS ambiguity estimates (before fixed) are not included in this table, but 
did contribute to the overall process noise variance of unit weight estimate. 

Attitude Model 
Standard Errors of Unit Weight (𝝈𝝈�𝟎𝟎) 

Jerk Vector Angular Acceleration Vector  Overall Process Noise Vector  

RPH 0.9231 0.9580 0.9718 

DCM 0.8975 0.9216 0.9329 

Quaternion 0.9012 0.9289 0.9826 
 

 
Tab. 6: Overall estimated a posteriori estimates of the process 
noise jerk and angular acceleration components. 

Attitude 
Model 

Standard Deviations 

Jerk [m/s3] Angular Acceleration 
[°/s2] 

RPH 9.231 0.958 

DCM 8.975 0.922 

Quaternion 9.012 0.929 

As with the observation variance components, the 
estimated standard error components for the process 
noise elements converge to approximately 1. This 
suggests that the a priori estimates of the process noise 
components are consistent with their a posteriori 
estimates. 

5.2 Response to System Jolt 

 To this point, the consistency between different 
attitude models has been established, and it appears that 
all three attitude models perform well under normal 
operating conditions. It is informative, however, to 
investigate how each attitude model responds to “stress,” 
and how they cope with outlier measurements. 

Upon investigation we discovered that for our 
dataset, the system was jolted at about the 63900 second 
mark as illustrated by the high rate IMU measurements 
(Fig. 5.22), and this jolt impacted IMU measurements 
for a duration of approximately 0.5 seconds. The results 
in Section 5.1 were all generated by flagging and 
removing the observations that were affected by the 
system jolt, but all results in this subsection 
purposefully use those observations to investigate the 
strain they place on the different attitude models. 
     The estimated overall observation standard error 
plots are shown in Fig. 5.23, the estimated gyroscope 
standard error plots are shown in Fig. 5.24, the 
estimated accelerometer standard error plots are shown 
in Fig. 5.25, and the estimated GPS observation 

standard error plots are shown from Fig. 5.26 to Fig. 
5.28. Each plot shows the estimated standard error with 
a 20 second moving window for each attitude model, to 
better facilitate a direct comparison. 
The system jolt is important to bear in mind in 
interpreting these plots, noting that the jolt primarily 
affected the IMU gyro measurements.  

 
Fig. 5.22: IMU measurement plots over the duration of the 

mobile observation period. Note the sharp jumps at 
approximately t = 63897. 

Looking at the estimated standard errors of unit 
weight over a 20s window from Fig. 5.23 to Fig. 5.28, 
the impact of the system jolt is quite apparent, as it 
produced a jump in all IMU standard error components 
near the 63900 second mark. It is important to note that 
the system jolt was almost instantaneous, but that the 
associated jump in standard error estimates occurs over 
a much longer period of time. This is due to the fact 
that the standard error components are evaluated over a 
time interval, rather than on an epoch-by-epoch basis. 
If the goal of VCE were to detect and remove these 
issues, rather than to characterize performance more 
broadly, evaluating variance components over a 
smaller time interval would improve the time-domain 
resolution. As illustration, Fig. 5.29 shows the 
estimated standard error of unit weight for the 
observation vector using a window size of 1 second. 
The standard errors of unit weight in 5.29 show a much 
more localized jump near the time of the system jolt, 
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but provides more noisy estimates of the standard error 
over the rest of the dataset. 

 
Fig. 5.23: Estimated observation standard errors of unit weight 

for each attitude model (moving window: 20s). Note 
the sharp jump in all models around the time 63900 
seconds. 

 
Fig. 5.24: Estimated gyro observation standard errors of unit 

weight for each attitude model (moving window: 20s). 

 
Fig. 5.25: Estimated accelerometer standard errors of unit 

weight for each attitude model (moving window: 20s). 

 
Fig. 5.26: Estimated L1 C/A standard errors of unit weight for 

each attitude model (moving window: 20s). 

Of particular note in Fig. 5.23 and Fig. 5.24 is the 
fact that the system jolt affected standard error estimates 
very similarly across all attitude models. This suggests 
that each attitude model has a similar response to 
erroneous observations. 

Additionally, the standard error estimates from Fig. 
5.25 to 5.28 display a much less pronounced impact 
from the system jolt than for the overall/gyroscope 
standard error estimates. This suggests that using VCE 
in the GMIS allows users to reliably identify specific 
sensors that are degrading solution quality. 

 
Fig. 5.27: Estimated L1 carrier phase standard errors of unit 

weight for each attitude model (moving window: 20s) 

     The estimated process noise standard errors of unit 
weight are shown in Fig. 5.30, the estimated system jerk 
standard error components are shown in Fig. 5.31, and 
the estimated second time-derivative of the attitude 
parameters’ standard error components are shown in Fig. 
5.32. As with the observation standard error 
components, each plot shows the estimated standard 
error components for each attitude model, to better 
facilitate a direct comparison between them. 
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Fig. 5.28: Estimated L2 carrier phase standard errors of unit 

weight for each attitude model (moving window: 20s) 

 
Fig. 5.29: Estimated standard errors of unit weight for the 
overall observation vector (moving window: 1s). Note that the 
"spike" from the system jolt is much more localized, but the 
overall standard error estimates are much noisier. 

 It is important to note that the plots shown include 
the standard error components related to the overall 
performance of the process noise residual vector, its 
components that are related to the system position, and 
its components that are related to the system attitude. 
There are more elements to the process noise residual 
vector than just those related to system position/attitude, 
including elements referring to the drift of IMU 
systematic errors and integer ambiguity estimates before 
they have been fixed. These elements of the process 
noise vector could be used to estimate associated 
standard error components, but such standard error 
components are considered not relevant for the purposes 
of this research. 

The estimated standard errors of unit weight for the 
overall process noise vector (Fig. 5.30) appear to be 
dominated by the behaviour of the process noise 
standard error component for the second time-derivative 
of the attitude parameters (Fig. 5.32). 

Overall, the behaviour of the process noise standard 
error components is very similar for all three attitude 

models. Each set of process noise standard error 
estimates appears to be influenced by the system jolt, 
particularly for the process noise elements related to the 
system attitude. It is particularly clear in Fig. 5.26 that 
the attitude process noise standard error estimates were 
most negatively impacted for the RPH model, with the 
Quaternion model having a smaller negative impact and 
the DCM model being the least impacted. Since all 
attitude models represent the angular motion of the 
system using the first-order derivatives of their attitude 
parameters, it is reasonable that they behave differently 
under different strains on the system. 

 
Fig. 5.30: Estimated process noise standard errors of unit weight 

for each attitude model (moving window: 20s). 

     In Fig. 5.31, the estimated standard errors of unit 
weight corresponding to the system jerk appear to 
exhibit largely similar behaviours across all different 
attitude models that were used. There was a jump 
associated with the system jolt for each attitude model, 
but these were a bit less pronounced than for the attitude 
parameters’ second time-derivatives. 

 
Fig. 5.31: Estimated system jerk standard errors of unit weight 

for each attitude model (moving window: 20s). 

     These results indicate that the DCM model is the 
most resistant to observation errors creeping into the KF 
system state prediction. This may be due to the larger 
number of constraints that the DCM model must adhere 
to, which might provide more strict limits on sudden 
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changes to attitude estimates for the DCM model. This, 
of course, comes with the caveat that the DCM model 
uses 18 attitude parameters, as opposed to the RPH 
model’s 6 parameters and the Quaternion model’s 8 
parameters. It is important to note that this does not 
imply that the DCM model outperforms the others, but 
rather that each model internalizes erroneous 
observations in different ways. 

 
Fig. 5.32: Estimated standard errors of unit weight for the 

second time-derivative of the attitude parameters for 
each attitude model (moving window: 20s). 

6. CONCLUDING REMARKS 
The core purpose of this research is to extend 

attitude modeling in the GMIS to include the DCM and 
quaternion attitude models. To this end, the RPH, DCM, 
and quaternion attitude models were systematically 
studied. In traditional multisensor integration, the 
attitude dynamics are modeled directly via applying the 
IMU measurements in the free inertial navigation 
calculation, but this work instead predicts the attitude 
states using their time derivatives in their system model 
and then conducting the IMU measurement updates in 
EKF. Furthermore, this research is novel in formulating 
state constraint equations on both the attitude 
parameters and their first order time derivatives. 

Moreover, the models developed for this research 
were fully realized and were successful in processing 
real road data, displaying strong capability in 
identifying specific elements that might degrade 
solution quality. The combination of the GMIS and 
comprehensive error analysis additionally allowed for a 
very thorough accounting for and analysis of system 
performance, and is very customizable in terms of what 
information is desired. 

Tab. 7 provides an overview of the parameters 
governing the three attitude models used in this research. 
Generally, computational complexity increases with 
both the number of states being estimated and the 
number of constraints being applied, so the DCM and 

quaternion attitude models come with an additional 
computational cost compared to the RPH model. 
However, such computational burden seems not 
worrisome with using modern computers in comparison 
with the computing capability a few decades ago.   

Tab. 7: Overview of each attitude model in the GMIS. 

Attitude 
Model 

No. of 
States 

Number of 
Constraints 

Process 
Noise 

RPH 6 0 2nd Order 

DCM 18 12 2nd Order 

Quaternion 8 2 2nd Order 

These models were directly linked to the IMU raw 
measurements, which allows for KF measurement 
updates when there is even only IMU data available. It 
also allows for direct estimation of residuals for the raw 
IMU (gyroscope and accelerometer) measurements, 
enabling much deeper system analysis, particularly in 
post-processing environments. Altogether, these 
contributions enabled a direct comparison to be made 
between different attitude models, without requiring 
either simulated data or a ground truth solution. This 
comparison demonstrated a general compatibility 
between the three attitude models used in this research 
outside of degenerate cases (i.e. Gimbal Lock), as well 
as a similar response to erroneous measurements. 

Moreover, this work not only provided the complete 
algorithms of three attitude models, verified their 
equivalency and performance consistency within the 
scope of GMIS and also revealed the potential for 
multisensor data fusion at sensor level and for 
conducting comprehensive error analysis through the 
combination of the developed GMIS and 
comprehensive error analysis frame work in discrete 
Kalman filtering. 
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