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Abstract: Since the release of Android version 7 in 
2016, the smartphone users have had access to the 
raw global navigation satellite system (GNSS) 
measurements (i.e., pseudorange, carrier-phase, 
Doppler, and carrier-to-noise density ratio (C/N0)) 
through the new application programming interface 
(API) called android location (API level 24). This 
capability opens opportunities to apply different 
positioning techniques, ranging from absolute to 
differential techniques, to the smartphone 
observations. Precise point positioning (PPP) is a 
powerful method for conducting accurate real-time 
positioning using a single receiver, and it can be 
applied to the smartphone observations as well. Most 
PPP smartphone positioning studies have so far 
focused on utilizing the GNSS only observations 
obtained from the smartphone's API. However, 
incorporating additional information as constraints, 
such as height information, can enhance accuracy and 
overall stability. Although the vertical positioning 
accuracy of GNSS is generally lower than the 
horizontal accuracy, utilizing recorded height from 
the smartphone GNSS chipset can still be beneficial. 
This incorporation increases the degree of freedom 
and strengthens the geometry between the receiver 
and satellites. In this study, we assess the 
effectiveness of the uncombined PPP (UPPP) model 
in the presence of height constraints. We utilize both 
pedestrian walking and vehicular datasets collected 
by a dual-frequency Xiaomi Mi8 device to evaluate 
the effect of adding height constraint to PPP model. 
The results demonstrate an average improvement of 
22% and 26% on the root-mean-square (RMS) of 
horizontal error and the 50th percentile error, 
respectively, when employing the height constraints 
UPPP model. Additionally, the findings indicated a 
decrease in PPP convergence time, further supporting 
the positive impact of incorporating height 
constraints. 

Keywords: Smartphone positioning, precise point 
positioning (PPP), pedestrian positioning, vehicular 
positioning, height constraints  

1. Introduction 
     The growing need for highly accurate location 
information in mass-market applications has driven 
the development of numerous smartphone-based 
location-based services (LBS) utilizing the GNSS 
technology. In 2016, Google announced the 
availability of raw GNSS observations, including 
pseudorange, carrier-phase, Doppler shift, and 
carrier-to-noise density ratio (C/N0) observations, to 
the users and developers. This has opened significant 
opportunities for the development of LBS based on 
smartphones. The increasing number of smartphone 
models capable of providing raw GNSS observations 
has led to a demand for improving the positioning 
accuracy with smartphones. Different positioning 
algorithms, such as single point positioning (SPP), 
precise point positioning (PPP), real-time kinematic 
(RTK) method and GNSS/INS integration 
positioning method, have been investigated for 
accuracy improvement of smartphone-based 
positioning. The reader can find a thorough overview 
of recent advancements and research in GNSS 
smartphone positioning carried out until 2021 in 
Paziewski (2020) and Zangenehnejad and Gao 
(2021). Since this contribution focused on the use of 
PPP, we will highlight some important and relevant 
contributions in this field. 
     Several researchers have proposed modified PPP 
models, including improved stochastic modelling, 
modifications to the PPP model, multi-constellation 
multi-frequency PPP and PPP-RTK, to enhance 
smartphone positioning performance. Guo et al. 
(2020) investigated the GNSS observations of a 
Xiaomi Mi8 device, identifying a significant 
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correlation between the pseudorange noise and C/N0 
records, which have been previously noted by several 
researchers. They then introduced a C/N0-dependent 
weighting model for GNSS positioning and 
implemented a time-differenced (TD) positioning 
filter to take advantage of high-precision carrier-
phase observations, achieving satisfying results 
specially with the inclusion of L5/E5 observations. Li 
et al. (2022a) introduced a combined elevation angle 
and C/N0 weighting method for the smartphone-
based GNSS PPP, resulting in a 22.7% and 24.2% 
improvement in 3D positioning accuracy in open-sky 
areas, and a 52.0% and 26.0% improvement in areas 
with limited visibility compared to the elevation-
angle-only and C/N0-only weighting models, 
respectively. Zangenehnejad and Gao (2023) used the 
least-square variance component estimation (LS-
VCE) method to stochastic modeling of noisy 
smartphone GNSS observations, finding no 
significant correlation between pseudorange and 
carrier-phase observations of GPS and GLONASS on 
the L1 frequency. They demonstrated that the quality 
of GLONASS carrier-phase observations is 
comparable to that of GPS. They then showed a 
significant improvement of 25.1% and 32.7% in 
horizontal positioning RMS and the 50th percentile 
error employing the obtained stochastic model.  
     Chen et al. (2019) introduced a modified single-
frequency PPP algorithm to manage evolving 
differences (inconsistency) between the pseudorange 
and carrier-phase observations by estimating distinct 
clock biases for each. The modified real-time PPP 
algorithm resulted in average horizontal and vertical 
RMS errors of 0.81 meters and 1.65 meters, 
respectively. Li et al. (2023) also proposed a 
customized UPPP model which addresses the 
inconsistency between code and carrier-phase 
observations using the Huawei P40 device. Their 
findings demonstrated enhanced positioning 
accuracy, achieving below 0.2 m in static scenarios 
and approximately 1.0 m in kinematic scenarios, 
which represents an improvement compared to UPPP 
without addressing code-carrier inconsistency. 
Elmezayen and El-Rabbany (2019) achieved 
decimeter-level positioning accuracy in both post-
processing and real-time static PPP modes and meter-
level accuracy in kinematic mode using a Xiaomi 
Mi8 with combined GPS/Galileo dual-frequency 
observations. Wu et al. (2019) utilized the dual-
frequency GPS (L1/L5) and Galileo (E1/E5a) 
observations of a Xiaomi Mi8 device. They achieved 
centimeter-level accuracy in static mode but meter-
level accuracy in kinematic mode using the PPP 
algorithm with the ionosphere-free combination. Li 
and Cai (2022) proposed a mixed single- and dual-
frequency quad-constellation PPP model to enhance 
the smartphone positioning accuracy, showing 
improved performance compared to the traditional 

dual-frequency and single-frequency PPP models in 
both static and kinematic tests. Recently, there has 
also been notable interest in PPP-RTK for enhancing 
the positioning accuracy and reducing the PPP 
convergence time (Li et al. 2022b).  
     Despite considerable efforts in this field, 
achieving high accuracy smartphone-based 
positioning still remains a significant challenge, 
typically limited to (sub)meter-level accuracy. Most 
of these studies have focused on the usage of 
smartphone GNSS observations only, coming from 
the location smartphone's API. However, the 
incorporation of supplementary information as 
constraints has the potential to improve both accuracy 
and overall stability. Such supplementary information 
can originate from either internal sensors such as the 
inertial measurement unit (IMU) sensor or external 
sources such as camera observations, digital map 
data, and WiFi signals, etc. An additional type of 
information that can be utilized is the IMU sensor 
data. They can be integrated with the smartphone 
GNSS observables to achieve a better localization 
solution. Zhu et al. (2022) proposed an IMU-aided 
uncombined PPP coupled mathematical model, 
suitable for smartphone positioning. The proposed 
PPP/INS-coupled model integrated the dual-
frequency GNSS observations and IMU data from 
smartphones with C/N0-dependent stochastic model 
and robust Kalman filter (RKF) model to improve the 
positioning performance under GNSS-degraded 
environments. Experimental results indicated that the 
proposed PPP/INS method could effectively improve 
the smartphone positioning performance compared 
with the conventional smartphone PPP method. Yi et 
al. (2022) presented a novel sensor fusion technique 
using PPP and the inertial sensors in smartphones, 
combined with a single- and dual-frequency (SFDF) 
optimization scheme for smartphones. A significant 
improvement in the final solutions has been 
confirmed in the case of multi-GNSS PPP/IMU 
integration, providing consistent horizontal 
positioning accuracy of <2 m RMS in real-world 
driving scenarios. 
     Another type of information that can be utilized 
for accuracy improvement is the height information 
to be integrated as the weighted constraints. Several 
research studies have investigated the accuracy of 
indoor smartphone-based positioning by considering 
the impact of incorporating height information 
estimated from the smartphone’s built-in barometer 
(Shin et al. 2016, Albéri et al. 2017, Landa et al. 2018 
and Zhao et al. 2019). These studies utilized the 
smartphone’s built-in barometer to calculate the 
pedestrian height using the atmospheric pressure. For 
example, Kim et al. (2012) used a barometer to 
estimate height location of pedestrians and designed a 
KF to minimize the height error. Abdulrahim et al. 
(2012) proposed a height limitation method based on 
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height change of adjacent steps to correct the height 
error. In indoor environments, the accuracy of the 
barometer heights may outperform that of the GNSS 
heights. In this contribution, however, we focus on 
the application of the GNSS technique for outdoor 
positioning. Therefore, we will utilize the GNSS 
chipset heights estimates to improve the accuracy of 
both pedestrian and vehicular positioning with 
smartphones. The Android system has a set of 
functions called API, allowing users to use the 
system's features. Each version of Android has 
different types of APIs. The android.location API 
includes classes for location-related services, and one 
of them is the "Location" class, which provides 
access to the GNSS chipset solution. However, the 
functionality of the position chipset calculation is a 
black box for users as it is not publicly disclosed. 
Nevertheless, it is evident that the chipset position 
determination does not solely rely on the GNSS 
observations. For instance, when entering areas 
where there were no GNSS signals such as 
underpasses or underground parking lots, the device 
continues to provide position output. This indicates 
the chipset has utilized other sensors in a sensor 
fusion approach, integrating likely available Inertial 
Navigation Systems (INS), WiFi signals, and other 
sensors in addition to the GNSS observations. The 
"Location" class consists of latitude and longitude in 
the WGS84 coordinate system, altitude, timestamp, 
accuracy, and other information such as bearing and 
velocity. The reader can find more information about 
the "Location" class at 
https://developer.android.com/reference/android/locat
ion/Location. The "AltitudeMeters" from this class 
provides the height above the WGS84 ellipsoid in 
meters. It is accessible for different providers such as 
GPS, fused, network, etc. In this research, we 
specifically use the recorded "AltitudeMeters" values 
for the GPS provider. 

     This paper is structured as follows. First, a brief 
review of the UPPP model is provided. How to 
incorporate the height constraints into the estimation 
procedure is also outlines in this section. Following 
that, we assess the performance of adding height 
constraints to the UPPP model using several GNSS 
observations from the Xiaomi Mi8 device in both 
pedestrian walking and vehicular experiments. 
Finally, some conclusions are made in the last 
section. 

2. Precis point positioning (PPP) 
     The PPP method is a single-receiver GNSS-based 
precise positioning technique. It is different from the 
RTK technique, which typically requires a base 
station (Zumberge 1997; Kouba and Héroux 2001 
and Héroux et al. 2014). Currently there is a high 
demand on improving the PPP accuracy with 
smartphones especially in kinematic mode. In this 
contribution, we aim to investigate how introducing 
height constraints affects the performance of PPP 
using Android smartphones. This section consists of 
two subsections, the first section provides some 
explanations about the functional model (uncombined 
PPP) used in the contribution while in the second 
section, how to introduce the height constraints into 
the mathematical model will be described.  

2.1 Functional model 

     In this study, we utilize the uncombined PPP 
model as the functional model, indicating that we use 
the undifferenced observations of each frequency 
without making any combination between them. The 
undifferenced GNSS code and carrier-phase 
observations for the satellite s and the receiver r on 
frequency j are as follows (Teunissen, and Kleusberg 
1998) 

𝐸�P𝑟,𝑗
𝑠 � = ρ𝑟𝑠 + 𝑇𝑟𝑠 + 𝑐𝑑𝑡𝑟 − 𝑐𝑑𝑡𝑠 + 𝛾𝑗𝐼𝑟,1

𝑠 + 𝑏𝑟,𝑗 + 𝑏𝑗𝑠

𝐸�Φ𝑟,𝑗
𝑠 � = ρ𝑟𝑠 + 𝑇𝑟𝑠 + 𝑐𝑑𝑡𝑟 − 𝑐𝑑𝑡𝑠 − 𝛾𝑗𝐼𝑟,1

𝑠 + 𝜆𝑗𝑁𝑟,𝑗
𝑠 + 𝐵𝑟,𝑗 + 𝐵𝑗𝑠

                                                  (1) 

where 𝑃𝑗  and Φ𝑗  represent the pseudorange and 
carrier-phase observations on frequency j  in meters, 
𝜌 = �(𝑋𝑠 − 𝑋𝑟)2 + (𝑌𝑠 − 𝑌𝑟)2 + (𝑍𝑠 − 𝑍𝑟)2  is the 
geometric range between satellite and receiver which 
is a function of the satellite coordinate (𝑋𝑠,𝑌𝑠,𝑍𝑠) 
and the receiver coordinate (𝑋𝑟 ,𝑌𝑟 ,𝑍𝑟), T denotes the 
tropospheric delay (m) which can be separated into 
dry and wet parts, c is the vacuum speed of light 
(m/s), 𝑑𝑡𝑟 and 𝑑𝑡𝑠 are the receiver and satellite clock 
errors (s), respectively, 𝐼𝑟,1

𝑠  is the first-order slant 
ionospheric delay on the first frequency L1 (m), 
𝛾𝑗 = 𝑓12/𝑓𝑗2  is the frequency-dependent multiplier 
factor (in the case of L1 frequency 𝛾𝑗 = 1), 𝑓𝑗  is the 

corresponding frequency, 𝜆𝑗  is the corresponding 
carrier-phase wavelength (m), 𝑁𝑟,𝑗

𝑠  denotes the 
integer carrier-phase ambiguity term in cycle, 𝑏𝑟,𝑗 
and 𝐵𝑟,𝑗  denote the frequency-dependent receiver 
pseudorange and carrier-phase hardware delays 
(biases),  respectively, and 𝑏𝑗𝑠  and 𝐵𝑗𝑠  are the 
frequency-dependent satellite pseudorange and 
carrier-phase hardware delays (biases), respectively.   
     The International GNSS Service (IGS) provides 
satellite clock error data derived from the ionosphere-
free linear combination of code observations on the 
L1 and L2 frequencies (i.e., P1 and P2) (Kouba and 
Héroux 2001). However, incorporating these satellite 

https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/Location
https://igs.org/
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clock errors into the PPP model for the original code 
and carrier-phase observations introduces an 
additional observation bias, requiring the 
consideration of satellite differential code biases 
(DCB). The DCBs are also available from the IGS.  
     Assuming the precise satellite clock errors 𝑐𝑑𝑡𝑠,𝐼𝐹 
provided by the IGS as 𝑐𝑑𝑡𝑠,𝐼𝐹 = 𝑐𝑑𝑡𝑠 − 𝑏𝐼𝐹(1,2)

𝑠  
where 𝑏𝐼𝐹(1,2)

𝑠 = 𝛼𝐼𝐹
1,2𝑏1𝑠 + 𝛽𝐼𝐹

1,2𝑏2𝑠   is the satellite 

ionosphere-free code bias, with the coefficients as 
follows: 





−−=−=
−=

)/(
)/(

222ji,
IF

ji,
IF

222ji,
IF

1 jij

jii

fff
fff

αβ
α

        (2) 

with availability of the precise satellite clock errors 
𝑐𝑑𝑡𝑠,𝐼𝐹, one can rewrite the uncombined PPP model 
for the L1 and L5 frequencies as follows: 

𝐸�P𝑟,1
𝑠 � = ρ𝑟𝑠 + 𝑇𝑟𝑠 + (𝑐𝑑𝑡𝑟 + 𝑏𝑟,1) − 𝑐𝑑𝑡𝑠,𝐼𝐹 + 𝐼𝑟,1

𝑠 + 𝑏1𝑠 − 𝑏𝐼𝐹(1,2)
𝑠

𝐸�Φ𝑟,1
𝑠 � = ρ𝑟𝑠 + 𝑇𝑟𝑠 + �𝑐𝑑𝑡𝑟 + 𝑏𝑟,1� − 𝑐𝑑𝑡𝑠,𝐼𝐹 − 𝐼𝑟,1

𝑠 + 𝜆1𝑁𝑟,1
𝑠 + 𝐵𝑟,1 + 𝐵1𝑠 − 𝑏𝐼𝐹(1,2)

𝑠 − 𝑏𝑟,1

𝐸�P𝑟,3
𝑠 � = ρ𝑟𝑠 + 𝑇𝑟𝑠 + �𝑐𝑑𝑡𝑟 + 𝑏𝑟,1� − 𝑐𝑑𝑡𝑠,𝐼𝐹 + 𝛾3𝐼𝑟,1

𝑠 + 𝑏𝑟,3 − 𝑏𝑟,1 + 𝑏3𝑠 − 𝑏𝐼𝐹(1,2)
𝑠

𝐸�Φ𝑟,3
𝑠 � = ρ𝑟𝑠 + 𝑇𝑟𝑠 + �𝑐𝑑𝑡𝑟 + 𝑏𝑟,1� − 𝑐𝑑𝑡𝑠,𝐼𝐹 − 𝛾3𝐼𝑟,1

𝑠 + 𝜆3𝑁𝑟,3
𝑠 + 𝐵𝑟,3 + 𝐵3𝑠 − 𝑏𝐼𝐹(1,2)

𝑠 − 𝑏𝑟,1

      (3) 

In this equation,   𝑏1𝑠 − 𝑏𝐼𝐹(1,2)
𝑠 = − 1

𝛾2−1
𝐷𝐶𝐵1,2

𝑠  and 

𝑏3𝑠 − 𝑏𝐼𝐹(1,2)
𝑠 = 𝐷𝐶𝐵1,3

𝑠 + 1
𝛾2−1

𝐷𝐶𝐵1,2
𝑠  are functions 

of inter frequency satellite DCBs where 𝐷𝐶𝐵𝑖𝑗𝑠 =
𝑏𝑖𝑠 − 𝑏𝑗𝑠 is the satellite DCBs between the ith and jth 
frequency bands (Schaer al. 1998; Dach et al. 2015). 
Multi-GNSS inter frequency satellite DCBs are 
currently provided by some IGS MGEX centers, such 

as the Institute of Geodesy and Geophysics (IGG) of 
the Chinese Academy of Sciences (CAS) (Wang et 
al. 2016) and the German Aerospace Center 
(Montenbruck et al. 2014). When external inter 
frequency satellite DCBs are available, the 
observation minus calculation (OMC) terms of Eq. 
(3) can be rewritten as follows: 

⎩
⎪⎪
⎨

⎪⎪
⎧𝐸 �𝛿P𝑟,1

𝑠 + 𝑐𝑑𝑡𝑠,𝐼𝐹 + 1
𝛾2−1

𝐷𝐶𝐵1,2
𝑠 � = 𝐺Δ𝑥𝑟 + 𝑇𝑟𝑠 + 𝑐𝑑𝑡�����𝑟 + 𝐼𝑟,1

𝑠

𝐸�𝛿Φ𝑟,1
𝑠 + 𝑐𝑑𝑡𝑠,𝐼𝐹� = 𝐺Δ𝑥𝑟 + 𝑇𝑟𝑠 + 𝑐𝑑𝑡�����𝑟 − 𝐼𝑟,1

𝑠 + 𝜆1𝑁�𝑟,1
𝑠

𝐸 �𝛿P𝑟,3
𝑠 + 𝑐𝑑𝑡𝑠,𝐼𝐹 + 𝐷𝐶𝐵1,3

𝑠 + 1
𝛾2−1

𝐷𝐶𝐵1,2
𝑠 � = 𝐺Δ𝑥𝑟 + 𝑇𝑟𝑠 + 𝑐𝑑𝑡�����𝑟 + 𝛾3𝐼𝑟,1

𝑠 − 𝐷𝐶𝐵1,3
𝑟

𝐸�𝛿Φ𝑟,3
𝑠 + 𝑐𝑑𝑡𝑠,𝐼𝐹� = 𝐺Δ𝑥𝑟 + 𝑇𝑟𝑠 + 𝑐𝑑𝑡�����𝑟 − 𝛾3𝐼𝑟,1

𝑠 + 𝜆3𝑁�𝑟,3
𝑠  

                  (4) 

where 𝛿  is the OMC notation, 𝐺  is a vector 
containing the line-of-sight components between 
satellite and receiver (𝐺 = � 𝜕𝜌𝜕𝑋𝑟

𝜕𝜌
𝜕𝑌𝑟

𝜕𝜌
𝜕𝑍𝑟
� ), Δ𝑥𝑟  is 

the receiver position increment error, 𝑐𝑑𝑡�����𝑟 = 𝑐𝑑𝑡𝑟 +
𝑏𝑟,1 ,  𝐷𝐶𝐵1,3

𝑟 = 𝑏𝑟,1 − 𝑏𝑟,3 ,  𝜆1𝑁�𝑟,1
𝑠 = 𝜆1𝑁𝑟,1

𝑠 + 𝐵𝑟,1 +
𝐵1𝑠 − 𝑏𝐼𝐹(1,2)

𝑠 − 𝑏𝑟,1  and 𝜆3𝑁�𝑟,3
𝑠 = 𝜆3𝑁𝑟,3

𝑠 + 𝐵𝑟,3 +
𝐵3𝑠 − 𝑏𝐼𝐹(1,2)

𝑠 − 𝑏𝑟,1 . The unknowns here are the 
receiver position, the receiver clock error 𝑐𝑑𝑡�����𝑟 , the 
real-valued carrier-phase ambiguity terms 𝜆1𝑁�𝑟,1

𝑠  and 
𝜆3𝑁�𝑟,3

𝑠 , the zenith wet delay and the receiver 
differential code bias between L1 and L5 frequency 
𝐷𝐶𝐵1,3

𝑟 . The slant ionospheric delay on the L1 
frequency 𝐼𝑟,1

𝑠  can be either estimated or modeled.  

2.2 Height constraint UPPP model 

     Let us assume the general equation of the World 
Geodetic System (WGS)-84 reference ellipsoid as 
follows 

𝑋2+𝑌2

𝑎2
+ 𝑍2

𝑏2
= 1                                       (5) 

where 𝑎  and 𝑏  are the semi-major and semi-minor 
axes of the WGS-84 reference ellipsoid, respectively. 
Incorporating the height information (ℎ) as weighted 
constraints ( ℎ = 𝑐 with 𝜎ℎ ) in the observation 
equations requires converting the height to the Earth-
centered, Earth-fixed (ECEF) frame (X, Y, Z) since 
the unknowns are in that frame. Let's suppose that the 
height constraint can be stated as follows: 

ℎ = 𝑓(𝑋𝑟 ,𝑌𝑟 ,𝑍𝑟)                                 (6) 

where ℎ  is a function of the receiver ECEF 
coordinates (i.e., 𝑋𝑟 ,𝑌𝑟 ,𝑍𝑟). The specific details and 
expression of the function 𝑓  can be found in 
Hofmann-Wellenhof's work (2012). The height 
constraint can be approximately expressed as follows 
(Phatak et al. 1999 and Liu et al. 2020): 

𝑋𝑟2+𝑌𝑟2

(𝑎+ℎ)2
+ 𝑍𝑟2

(𝑏+ℎ)2
= 1                              (7) 

which is a highly reliable approximation given that h 
is much smaller than a and b. Next, we need to take 
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partial derivatives of h with respect to the receiver 
ECEF coordinates (i.e., 𝑋𝑟 ,𝑌𝑟 ,𝑍𝑟). These derivatives 
are of the form (Phatak et al. 1999 and Liu et al. 
2020): 

⎩
⎪
⎨

⎪
⎧
𝜕ℎ
𝜕𝑋𝑟

= 𝑋𝑟(𝑎+ℎ)(𝑏+ℎ)3

(𝑏+ℎ)3�𝑋𝑟2+𝑌𝑟2�+(𝑎+ℎ)3𝑍𝑟2

𝜕ℎ
𝜕𝑌𝑟

= 𝑌𝑟(𝑎+ℎ)(𝑏+ℎ)3

(𝑏+ℎ)3�𝑋𝑟2+𝑌𝑟2�+(𝑎+ℎ)3𝑍𝑟2

𝜕ℎ
𝜕𝑍𝑟

= 𝑍𝑟(𝑎+ℎ)3(𝑏+ℎ)
(𝑏+ℎ)3�𝑋𝑟2+𝑌𝑟2�+(𝑎+ℎ)3𝑍𝑟2

                   (8) 

and 

𝛿ℎ = 𝜕ℎ
𝜕𝑋𝑟

𝑑𝑋𝑟 + 𝜕ℎ
𝜕𝑌𝑟

𝑑𝑌𝑟 + 𝜕ℎ
𝜕𝑍𝑟

𝑑𝑍𝑟             (9) 

Eq. (9) will be used as the height constraint added to 
the observation equation.  
Now let’s assume that the linearized form of 
observation equations of each UPPP form is 
expressed as 𝛿𝑦 = 𝐴𝛿𝑥 + 𝜀  where 𝛿𝑦 =
[𝛿𝑃𝐿1 𝛿𝑃𝐿5 𝛿Φ𝐿1 𝛿Φ𝐿5 𝛿ℎ]𝑇 is the 
observation vector including pseudorange and 
carrier-phase observations as well as the  height 
information added to the observation equations as the 
weighted constraints, 𝜀 denotes the unmodeled errors 
of the observations, and 𝐴 = [𝐴𝑃𝑇 𝐴Φ𝑇 𝐴ℎ𝑇]𝑇  is the 
design matrix defined as follows: 

𝐴𝑃 = �𝐺 𝑒 0 𝑚𝑝𝑓 I 0 0
𝐺 𝑒 −𝑒 𝑚𝑝𝑓 𝛾3I 0 0�

𝐴Φ = �𝐺 𝑒 0 𝑚𝑝𝑓 −I I 0
𝐺 𝑒 0 𝑚𝑝𝑓 −𝛾3I 0 I �

𝐴ℎ = � 𝜕ℎ𝜕𝑋𝑟
𝜕ℎ
𝜕𝑌𝑟

𝜕ℎ
𝜕𝑍𝑟

0 0 0 0 0 0�

(10) 

with the unknowns Δ𝑥𝑟 , 𝑐𝑑𝑡�����𝑟 , 𝐷𝐶𝐵1,3
𝑟 , 𝑍𝑊𝐷 , 𝐼𝑟,1

𝑠 , 
𝜆1𝑁�𝑟,1

𝑠 and 𝜆3𝑁�𝑟,3
𝑠   (the receiver position, the receiver 

clock error, the real-valued carrier-phase ambiguity 
terms, the zenith wet delay and the receiver 
differential code bias between L1 and L5 frequency). 
The slant ionospheric delay on the L1 frequency 𝐼𝑟,1

𝑠  
can be modeled. In this contribution, the GIM is used 
as the external ionosphere information to model the 
ionospheric error. Therefore, the columns related to 
the slant ionospheric delays should be removed. In 
Eq. (10), G is a vector consisting of the partial 
derivatives of the geometric distance between the 
satellite and the receiver with respect to the receiver 
coordinates, e is an array of all ones, 𝑚𝑝𝑓 is a vector 
containing the tropospheric mapping functions and I 
is the identity matrix.  
     Finally, we need to decide where to obtain height 
information. The android.location API, part of 
Android, includes the "Location" class containing 
details such as latitude, longitude, altitude (provided 
in the WGS84 coordinate system), and so on. More 
details can be found at 
developer.android.com/reference/android/location/Lo

cation. In this research, we use the "AltitudeMeters" 
values for the GPS provider with a standard deviation 
of 𝜎ℎ = 10  cm. These values are recorded by the 
GnssLogger App and saved into a CSV file.  

2.3 Simulation example 

To demonstrate the effectiveness of integrating 
height constraints into the positioning performance, 
simulations are conducted for a basic GNSS 
positioning case of four satellites. The design matrix 
for four satellites takes the form (Hofmann-
Wellenhof 2012): 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡−

𝑋1−𝑋𝑟
𝜌1

− 𝑌1−𝑌𝑟
𝜌1

− 𝑍1−𝑍𝑟
𝜌1

1

−𝑋2−𝑋𝑟
𝜌2

− 𝑌2−𝑌𝑟
𝜌2

− 𝑍2−𝑍𝑟
𝜌2

1

−𝑋3−𝑋𝑟
𝜌3

− 𝑌3−𝑌𝑟
𝜌3

− 𝑍3−𝑍𝑟
𝜌3

1

−𝑋4−𝑋𝑟
𝜌4

− 𝑌4−𝑌𝑟
𝜌4

− 𝑍4−𝑍𝑟
𝜌4

1⎦
⎥
⎥
⎥
⎥
⎥
⎤

         (11) 

     In a local apparent (LA) system, the design matrix 
A simplifies to 

𝐴 = �

−cos𝐸1cos𝛼1 −cos𝐸1sin𝛼1 −sin𝐸1 1
−cos𝐸2cos𝛼2 −cos𝐸2sin𝛼2 −sin𝐸2 1
−cos𝐸3cos𝛼3 −cos𝐸3sin𝛼3 −sin𝐸3 1
−cos𝐸4cos𝛼4 −cos𝐸4sin𝛼4 −sin𝐸4 1

�   (12) 

where 𝐸𝑖 and 𝛼𝑖 are the elevation angle and azimuth 
of the satellites, respectively. Adding the height 
constraint to the above problem can be done as 
follows: 
𝐴𝑐𝑜𝑛𝑠𝑡 =

⎣
⎢
⎢
⎢
⎢
⎡
−cos𝐸1cos𝛼1 −cos𝐸1sin𝛼1 −sin𝐸1 1
−cos𝐸2cos𝛼2 −cos𝐸2sin𝛼2 −sin𝐸2 1
−cos𝐸3cos𝛼3 −cos𝐸3sin𝛼3 −sin𝐸3 1
−cos𝐸4cos𝛼4 −cos𝐸4sin𝛼4 −sin𝐸4 1

𝜕ℎ
𝜕𝑋𝑟

𝜕ℎ
𝜕𝑌𝑟

𝜕ℎ
𝜕𝑍𝑟

0⎦
⎥
⎥
⎥
⎥
⎤

      (13) 

where 𝜕ℎ
𝜕𝑋𝑟

, 𝜕ℎ
𝜕𝑌𝑟

 and 𝜕ℎ
𝜕𝑍𝑟

 are to be replaced with the 
values obtained from Eq (8). The covariance matrix 
of the estimates in ECEF frame can be expressed as: 
𝑄𝑥� = (𝐴𝑇𝐴)−1 = 

⎣
⎢
⎢
⎢
⎡ 𝜎𝑋𝑟

2  𝜎𝑋𝑟𝑌𝑟 𝜎𝑋𝑟𝑍𝑟 𝜎𝑋𝑟𝑐𝑑𝑡
𝜎𝑋𝑟𝑌𝑟 𝜎𝑌𝑟

2 𝜎𝑌𝑟𝑍𝑟 𝜎𝑌𝑟𝑐𝑑𝑡
𝜎𝑋𝑟𝑍𝑟 𝜎𝑌𝑟𝑍𝑟 𝜎𝑍𝑟

2 𝜎𝑍𝑟𝑐𝑑𝑡
𝜎𝑋𝑟𝑐𝑑𝑡 𝜎𝑌𝑟𝑐𝑑𝑡 𝜎𝑍𝑟𝑐𝑑𝑡 𝜎𝑐𝑑𝑡2 ⎦

⎥
⎥
⎥
⎤

                    (14) 

assuming the identity matrix as the weight matrix. 
Different dilution of precision (DOP) parameters can 
be calculated as follows (Hofmann-Wellenhof 2012): 

https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/Location
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧𝐺𝐷𝑂𝑃 = �𝜎𝑋𝑟

2 + 𝜎𝑌𝑟
2 + 𝜎𝑍𝑟

2 + 𝜎𝑐𝑑𝑡2

𝑃𝐷𝑂𝑃 = �𝜎𝑋𝑟
2 + 𝜎𝑌𝑟

2 + 𝜎𝑍𝑟
2

𝑇𝐷𝑂𝑃 = �𝜎𝑐𝑑𝑡2

𝐻𝐷𝑂𝑃 = �𝜎𝐸𝑟
2 + 𝜎𝑁𝑟

2

𝑉𝐷𝑂𝑃 = �𝜎ℎ𝑟
2

           (15) 

where GDOP is geometric dilution of precision, 
PDOP is position dilution of precision and TDOP is 
time dilution of precision. HDOP and VDOP are also 
the dilution of precision in the horizontal position and 
the vertical component, respectively. It should be 
noted that 𝜎𝐸𝑟

2 , 𝜎𝑁𝑟
2  and 𝜎ℎ𝑟

2  can be computed from 
transforming the cofactor matrix 𝑄𝑥�  into the LA 
frame by the law of covariance propagation 
(Hofmann-Wellenhof 2012). The position of a 
receiver is assumed to be located in Calgary (51°N, 
114°W), AB, Canada with a height of 1115 m. The 
assumed elevation and azimuth angles are chosen as 
𝐸1 = 30,𝐸2 = 40,𝐸3 = 50,𝐸4 = 60  degrees and 
𝛼1 = 0,𝛼2 = 90,𝛼3 = 180,𝛼4 = 270  degrees. In 
Figure 1, one can also observe the horizontal 
positioning error distributed in the shape of error 
ellipses in Case I (without height constraint) and 
Case II (height constraint UPPP model). In Case I, 
the ellipse is elongated approximately in the NE 
direction, whereas in Case II, the error ellipse 
transforms nearly into a circle, indicating a reduction 
in the length of the major semi-axes. 

 

 

Fig. 1 Simulation setup (red error ellipse: Case I no 
height constraint and blue error ellipse: Case II 
height constraint UPPP model) 

     Figure 2 also illustrates DOP values for Case I 
(without height constraints) and Case II (height 
constraint UPPP model). This figure allows us to 
intuitively observe how the DOP values change when 
the height constraint is added. The outcomes show 

that incorporating height constraints not only 
improves the vertical component estimates but also 
positively affects the horizontal components 
estimates as well as the receiver clock error estimate.  

 
Fig. 2 DOP parameters for Case I and Case II  

     According to the simulation outcomes, the 
inclusion of a height constraint is expected to 
improve the smartphone positioning performance. 
The next section will further validate this expectation 
using real datasets, including both walking and on-
dash scenarios. "On-dash driving dataset" refers to a 
dataset collected with a smartphone located on the 
dashboard of a car while driving. 

3. Experimental results  
     In this section, we will present the positioning 
results of both pedestrian walking and vehicular on-
dash scenarios to evaluate the effect of adding height 
constraints to PPP model using a dual-frequency 
Xiaomi Mi8 device. The Xiaomi Mi8, equipped with 
the Broadcom BCM47755 GNSS chipset, is the 
world’s first dual-frequency GNSS smartphone, i.e., 
added with L5 for GPS and QZSS and E5a for 
Galileo (European GNSS Agency, GSA 2018). 

3.1 Walking experiment 

     A walking test was conducted in the parking lot of 
University of Calgary on 21 April 2021. The test 
setup and the reference trajectory can be seen in 
Figure 3. The Xiaomi Mi8 smartphone was placed on 
the Trimble controller beside the pole. The reference 
trajectory was obtained from the RTK solution using 
the commercial post-processed Novatel software 
called Waypoint. A geodetic receiver setup on a 
geodetic pillar on the roof of the ENF building (with 
the true position) was also considered as the base 
receiver. The vertical level arm between the 
smartphone and the Trimble R10 antenna was 
measured and applied while the corresponding 
horizontal level arm was ignored since it is small 
enough compared with the positioning accuracy level 
(around 10 cm). Tables 1 provides GNSS data 
information and processing setting. 
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Fig. 3 Walking experiment setup and trajectory (Xiaomi Mi8, April 21, 2021) 

Table 1. GNSS data information and processing setting 

Device Xiaomi Mi8 

Measurements used GPS (L1/L5), GLONASS (L1), Galileo (E1/E5a) 

Mode Kinematic 

Date 21 April 2021 

Duration 10 min 

Sampling interval 1 s 

Troposphere model Saastamoinen model (Saastamoinen 1972) 

Ionosphere model Global ionospheric maps (GIM) 

Functional model Case I: UPPP model without height constraint and Case II: height constraint 
UPPP model 

Stochastic model C/N0 and elevation weighting function (Zangenehnejad and Gao 2023) 

Elevation mask angle 10 deg 

C/N0 mask 20 dB-Hz 

Satellite orbit CODE MGEX precise ephemerides (5 min interval) 

Clock error CODE MGEX precise clock (1 sec interval) 

Satellite DCB correction CAS DCBs in Bais SINEX (BSX) format 

 
     The positioning error is then calculated as the 
difference between the estimated positions and the 
true coordinates. First, it is crucial to examine the 
smartphone vertical error (called receiver solution), 
as we intend to utilize the smartphone height 
information as the weighted constraints. Figure 4 
provides the receiver vertical error for the walking 
test on 21 April 2021. As illustrated in the plot, the 
receiver vertical errors display a smooth behavior 

with no sudden jumps or anomalies, which is not the 
case for the PPP solutions employing the GNSS 
observations. This can be explained by the fact that 
the chipset solution is not solely reliant on the GNSS 
observations and incorporates data from other sensors 
as well. Therefore, it is expected that the receiver's 
vertical component accuracy is superior to solutions 
that rely solely on the GNSS data. Consequently, one 
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may benefit from such better height estimates by 
considering them as the weighted constraints. 

 
Fig. 4 Receiver vertical error for walking test 

     Figure 5 also provides the horizontal positioning 
performance of the UPPP model for the walking test 
on 21 April 2021 in the two different cases, Case I: 
UPPP model, Case II: height constraint UPPP model 
as well as the receiver (smartphone) solution. It also 
depicts the cumulative distribution error plot of the 
horizontal positioning error for Case I, Case II and 
the smartphone solution. Please note that the values 
displayed in this figure were calculated using all 
positioning solutions, including the convergence 
period. A few observations can be highlighted from 
the figure. (1) Both Case I and Case II solutions 
outperform the smartphone solution, indicating better 
performance of our solutions. However, this 
superiority is not observed during the first 60 seconds 

before the PPP convergence occurred. (2) The results 
indicate that incorporating height constraints into the 
UPPP model resulted in an improvement in 
positioning performance, specifically a 24% decrease 
in horizontal RMS and a 26% decrease in the 50th 
percentile error. (3) The Case II solution outperforms 
Case I for the majority of epochs, approximately 
99.8% of the entire time.  
     Tables 2 also provides the East, North and 
Horizontal RMS values for Case I: UPPP model only, 
Case II: adding height constraint and the receiver 
(smartphone) solution. The table also includes the 
PPP convergence time. It is defined as the time taken 
to achieve a specific level of positioning accuracy. In 
this study, convergence is defined as when the 
horizontal positioning error is less than 1 meter and 
remains below 1 meter for all subsequent epochs. 
Using this definition, Case I converged at epoch 97, 
while Case II achieved convergence at epoch 29, 
indicating a 70% reduction in convergence time. 
However, according to this definition, the 
smartphone solution never achieved convergence. To 
have a better view, Figure 6 displays the convergence 
criteria limit (1 m) along with the epochs of 
convergence depicted by the magenta dashed lines. 
However, it is important to acknowledge that the 
convergence statistics might be unreliable based on 
relatively shorter datasets in this walking dataset. 
Further analysis of longer datasets therefore would be 
recommended as a future work. 

 
 

Fig. 5 Horizontal positioning error (left), Cumulative distribution error plot of horizontal positioning 
error (right) for walking test 
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Fig. 6 Convergence performance of Case I, Case II 

and smartphone solution for walking test 

3.2 On-dash driving experiment 

     Two on-dash driving tests were conducted to 
examine the positioning performance of Case I in 
comparison to the height constraint UPPP model 
(Case II). Both datasets were collected on May 10th, 
2023, in an open sky environment including 
overpasses, and in a more challenging environment in 

Calgary, Alberta, Canada. The reference trajectories 
were also obtained from the tightly-coupled 
RTK/INS solution using the commercial post-
processed Novatel software called Waypoint. 
Similarly, the geodetic receiver located on the roof of 
the ENF building (was considered as the base 
receiver. Figure 7 displays the reference vehicle’s 
paths in the two different environments  

Table 2 East, North and Horizontal RMS values in 
meters for Case I: UPPP model only, Case 
II: height constraint UPPP model and 
receiver (smartphone) solution 

Solutions East North Horizontal Convergence 
time (sec) 

Case I 0.652 0.627 0.905 97 

Case II 0.471 0.494 0.683 29 

Rec 
solution 

0.695 0.731 1.009 Not achieved 

 

  

Fig. 7 On-dash driving trajectories (Left: Open-sky environment, Right: Urban environment) 

     To validate the smartphone vertical performance, 
the vertical error plots for both datasets (open-sky 
and urban environment tests), are presented in Figure 
8. In this plot, one can also observe the UPPP only 
vertical RMS values (Case I with no height 
constraints). As depicted in the plot, the receiver 
vertical RMS values are approximately 1.6 and 2.04 
meters for the open-sky and urban environments, 
respectively. Two key points should be highlighted 
here: (1) They are larger than the corresponding 
horizontal components RMS values (See Figure 9), 
which is expected because the GNSS height estimates 
are typically worse than the horizontal components 
due to the geometry between the satellites and the 

receiver. (2) The UPPP vertical RMS values are 
larger than those of the smartphone solutions. 
Morover, the receiver vertical errors display a smooth 
behavior with no sudden jumps or anomalies, which 
is not the case for the UPPP only solutions. This can 
be explained by the fact that the chipset solution is 
not solely reliant on the GNSS observations and 
incorporates data from other sensors as well. 
Therefore, it is expected that the receiver's vertical 
component accuracy is better than ours, which solely 
relies on the GNSS data. Consequently, one can 
benefit from these better height estimates by 
considering them as the weighted constraints. 
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Fig. 8 Vertical positioning error (Left: Open-sky environment test and Right: Urban environment) 

     Figure 9 provides the horizontal positioning 
performance of the UPPP model for the on-dash 
driving test carried out on 10 May 2023 in the open-
sky environment in two different cases, Case I: UPPP 
model only, Case II: height constraint UPPP model. 
From the figure, a few key points can be highlighted. 
(1) Adding height constraints into the UPPP model 
resulted in an improvement in positioning 
performance with 25% decrease in horizontal RMS 
and 30% decrease in the 50th percentile error. (2) 
The maximum error decreased from 1.68 meters to 
about 1.35 meters when the height constraints added. 
(3) The Case II solution outperforms Case I for the 
majority of epochs, approximately 70% of the entire 
time period. (4) Case I converged at epoch 78, Case 
II at epoch 32, whereas the smartphone solution did 
not achieve convergence. It is important to highlight 
that after about 18 minutes (epoch 1100), the RMS 
surpassed the selected threshold, remaining 
increasing for Case I and subsequently decreasing for 
Case II. Nevertheless, epochs 78 and 32 are still 
regarded as the convergence epochs. 

 

 

Fig. 9 Horizontal positioning error (left), Cumulative 
distribution error plot of horizontal positioning 
error (right) for open-sky driving test 

     Finally, we investigate how introducing a height 
constraint to the UPPP model affects performance in 
a more challenging environment. The second dataset 
was collected in Kensington, an urban area in 
Calgary, on the same date as the open-sky dataset 
(see Figure 7). Figure 11 illustrates the horizontal 
positioning performance of the UPPP model for this 
dataset in two different cases. Tables 3 also provides 
the East, North, horizontal RMS values and the 
convergence time for both on-dash datasets. The 
same conclusion holds true here. (1) Adding height 
constraints into the UPPP model resulted in an 
improvement in positioning performance with 18% 
decrease in horizontal RMS and 22% decrease in the 
50th percentile error. (2) The maximum error 
decreased from approximately 8.51 meters to about 
4.73 meters when the height constraints added. (3) 
The Case II solution outperforms Case I for the 
majority of epochs, approximately 79% of the entire 
time period. It is important to note that due to the 
challenging environment, none of the cases met the 
convergence criteria. 

 
Fig. 10 Convergence performance of Case I, Case II 

and smartphone solution for open sky driving test 
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Fig. 11 Horizontal positioning error (left), Cumulative distribution error plot of horizontal positioning 

error (right) for urban area driving test 

4. Summary and conclusions 
     Since Android version 7's release in 2016, 
smartphone users gained access to the raw GNSS 
measurements via the android.location API (API 
level 24). Since then, the utilization of smartphones 
for various applications such as cadastral surveying, 
mapping surveying applications, and navigation has 
been significantly increasing due to the cost-effective 
GNSS smartphones. Despite a focus on using the 
smartphone GNSS observations in many studies, this 
research considered the impact of incorporating the 
height information on the smartphone-based 
positioning. It is expected that the incorporation of 
height information significantly improves the overall 
solution, even with the inherent lower vertical 
accuracy of GNSS. This is because it increases the 
degree of freedom and strengthens the geometry of 
the receiver and satellites. This study specifically 
evaluated the uncombined PPP model performance 
while the height constraints were introduced to the 
model. Several datasets from both pedestrian walking 
and vehicular scenarios with a dual-frequency 
Xiaomi Mi8 device were utilized. The results 
demonstrate notable enhancements. The conclusions 
of our study are listed as follows: 

1- In the walking test, the results showed an 
improvement of 24% and 26% on the RMS of 
horizontal error and the 50th percentile error, 
respectively, when employing the height 
constraints UPPP model (Case II). Additionally, 
Case II demonstrated a remarkable 70% reduction 
in the PPP convergence time. 

2- In the open-sky environment scenario, the results 
confirmed a 25% decrease in the horizontal RMS 
and a 30% decrease in the 50th percentile error, 
when employing the height constraints UPPP 
model (Case II). Similar to the walking test, this 
dataset also revealed a decrease in PPP 

convergence time, providing further support for 
the positive impact of incorporating height 
constraints. 

Table 3 East, North and Horizontal RMS values in 
meters for Case I: UPPP model only, Case 
II: height constraint UPPP model and 
receiver (smartphone) solution for 
kinematic experiment 

Dataset Solution East North Horizontal Convergence 
time (sec) 

 

 

Dataset 
1 

Case I 0.580 0.406 0.708 78 

Case II 0.378 0.368 0.528 32 

Rec 
solution 

1.543 1.295 2.015 Not 
achieved 

 

 

Dataset 
2 

Case I 1.101 1.623 1.944 Not 
achieved 

Case II 1.166 1.087 1.594 Not 
achieved 

Rec 
solution 

1.593 1.496 2.185 Not 
achieved 

 
3- In the more challenging environment scenario, 

utilizing the height constraints (Case II) resulted 
in an 18% reduction in horizontal RMS and a 
22% decrease in the 50th percentile error. 
Additionally, the maximum error decreased from 
approximately 8.51 meters to about 4.73 meters 
when the height constraint was added. However, 
due to the challenging environment, none of the 
cases met the convergence criteria. 

     In our future research, we plan to employ the 
smartphone's barometer to estimate height using the 
atmospheric pressure. It can be helpful particularly in 
downtown areas where the GNSS signals may face 
blockage mainly caused by the presence of tall 
buildings in those areas. 
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