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Abstract: Soil moisture (SM) plays a vital role in 
agriculture, ecosystem functioning, water 
conservation, weather predictions and climate models. 
High spatial and temporal frequency data of soil 
moisture is crucial for agricultural and other 
important applications. Recent advancements have 
brought attention to the possibility of using GNSS 
reflectometry (GNSS-R) for applications on land 
such as snow sensing, soil moisture retrieval, sea 
surface monitoring and other applications in addition 
to positioning, navigation, and timing applications of 
GNSS. Cyclone Global Navigation Satellite System 
(CYGNSS) is designed to improve hurricane 
forecasting by studying the interaction between the 
ocean and the atmosphere within tropical cyclones. 
However recent studies show the opportunity of this 
system for high spatio-temporal soil moisture 
retrieval. This study presents a machine 
learning-based approach to get SM at a selected 
region in Ethiopia using CYGNSS data and analysis 
of the result. Artificial Neural Network (ANN) model 
is developed and used to predict soil moisture. The 
Soil Moisture Active Passive (SMAP) global soil 
moisture data have been used as reference data in the 
ML algorithm. The proposed approach has achieved a 
good correlation between predicted values of soil 
moisture and reference values from SMAP. 

Key Words: CYGNSS; SMAP; soil moisture; 
surface reflectivity; artificial neural network. 

1. Introduction 

     The water cycle between the ground and the 
atmosphere on Earth is actively influenced by soil 
moisture[1]. Soil moisture (SM) plays an important 
role in various environmental processes, influencing 
ecosystem functioning, hydrological cycles, 
vegetation states, agricultural productivity, and 
climate patterns[1][2]. As a result, SM monitoring on a 
broad scale is crucial for agricultural research and the 
assessment of environmental parameters. It is also 
important for improving weather and climate 
forecasts.  

     Satellites particularly designed for soil 
moisture monitoring include: SMAP, which measures 
soil moisture around the world using both active 
(radar) and passive (radiometer) sensors; Soil 
Moisture and Ocean Salinity (SMOS), which uses a 
microwave radiometer; and Sentinel-1, which is part 
of the Copernicus program. Both SMAP and SMOS 
are equipped with an L-band microwave radiometer 
payload[3]. However, the coarse spatial resolution of 
passive microwave satellites, such as SMAP and 
SMOS, is around 40 km. Furthermore, vegetation 
structure and surface roughness have a significant 
impact on readings from synthetic aperture radar 
(SAR) systems, such as Sentinel-1 and 
TerraSAR-X[4]. Moreover, radar technology such as 
Scatterometer and Synthetic Aperture Radar can 
provide detailed soil moisture information with high 
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precision and less frequent revisits (more than 12 
days). However, it may not meet the requirements for 
agricultural applications alone[5].  

     A bi-static microwave remote sensing 
technology called Global Navigation Satellite System 
reflectometry (GNSS-R) relies on receiving reflected 
GNSS signals from the Earth's surface. Rather than 
being used for position, navigation, and timing, 
GNSS-reflectometry technology could be used to 
determine the relationship between ecosystem 
processes such as land-atmosphere, water, energy 
exchange, and vegetation productivity and the 
correlation between sea surface, soil moisture, 
freeze/thaw state, and the associated environmental 
characteristics. The study of sea surface anomalies, 
snow, and land features has advanced using ground, 
air, and spaceborne measurements sparked by 
GNSS-R[6]. In addition to the existing passive and 
active radar systems, GNSS-R has the potential to 
provide a new method of monitoring SM globally 
through the use of satellite receivers[2]. For soil 
moisture retrieval, a GNSS-R receiver is analogous to 
a passive radiometer due to surface roughness and 
surface dielectric properties. Its use of L-band, 
constellations of tiny satellites, and its stringent 
receive-only nature give it a significant potential for 
SM remote sensing. It also provides minimal revisit 
periods and great spatial resolution. Studies have 
shown that the GNSS bistatic radar signals are 
sensitive to the features of the land surface, including 
soil moisture when they are forward dispersed off the 
land surface and subsequently received by a separate 
passive receiver. UK-DMC, TDS-1, and CYGNSS 
are the most commonly used spaceborne GNSS-R 
programs for soil moisture detection.  

     To enhance weather forecasts, NASA's 
CYGNSS was launched in December 2016. It 
measures ocean winds between 38° north and 38° 
south latitudes[7]. The CYGNSS mission can make 
measurements from a total of 32 channels at once 
across its constellation of eight microsatellites. Over 
the ocean, its average return time is seven hours. 
Currently, some noteworthy outcomes have been 
discovered using CYGNSS data for the SM 
application. The availability of spaceborne data 

obtained by the CYGNSS constellation has led to a 
surge in interest in the issue of recovering SM on a 
broad spatial scale from such datasets. One of these 
was put out by Kim and Venkat[8], who suggested 
using the relative signal-to-noise ratio of CYGNSS to 
recover SM. The regional daily SM estimation was 
then created by fusing the rSNR of CYGNSS with 
the SM of SMAP[13]. The correlation coefficient (R) 
between the SM acquired by CYGNSS and SMAP in 
regions with intermediate vegetation conditions is 
0.77, whereas it decreases to 0.68 in areas with high 
densities of vegetation. Chew and Small[2] discovered 
a link between the change in CYGNSS reflectivity 
and the change in SM in SMAP and used a linear 
regression approach to explain this relationship. 
Some past studies on CYGNSS soil moisture 
retrieval mainly concentrated on analyzing the 
temporal changes in SNR time series or the 
pre-sumed linear correlation between CYGNSS 
recorded signal-to-noise ratio (SNR)[2][9].  However, 
surface characteristics, such as vegetation water 
content, surface roughness, topography, and soil type, 
have an impact on the CYGNSS reflectivity signal. 
Yan et al. estimated SM using simulated data 
applying machine learning techniques[10]. They only 
take reflectivity, elevation angle, and dielectric 
constant into account. Lwin et al. used the Support 
Vector Machine (SVM) approach to estimate global 
Soil Moisture (SM)[11]. Senyurek et al.[12] and 
Eroglu et al.[1] have looked at the usage of 
non-parametric, non-linear machine learning 
algorithms. Yan et al.[13] recover global SM 
estimations using ML regression; however, their 
approach is only effective when the input is 
comparable to the land types utilized during training. 
Tyagi et al study, at a chosen agricultural area in 
India, established an Artificial Neural Network (ANN) 
framework to estimate SM by taking into account the 
effects of vegetation and roughness[14]. 
     Nonlinear models are better and more robust 
than linear models. The nonlinear relationship 
between CYGNSS signals and surface soil moisture 
has been constructed in this study using a machine 
learning (ML)-based technique with high spatial and 
temporal resolution. A multi-layer ANN has been 
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employed to train the nonlinear relation.  Surface 
reflectivity derived from ddm snr of CYGNSS data, 
VWC to provide valuable information about the 
water status of plants and canopies, and roughness to 
represent the irregularities and variations in the 
Earth's surface at a small scale obtained from the 
SMAP SM 9km data set are input characteristics to 
the learning process. The model is trained using 
monthly averaged soil moisture values, and its 
prediction is then evaluated. 

2. Datasets 

2.1 CYGNSS Data 

     A constellation of 8 microsatellites known as 
the CYGNSS Mission was successfully launched in 
December 2016 in order to improve hurricane 
forecasting and gain a better understanding of the 
processes that drive hurricane intensity. The 
CYGNSS mission's objective is to determine the 
near-surface wind speed under all precipitation 
scenarios. A delay Doppler mapping instrument 
(DDMI) is a component of every observatory. It 
collects signals reflected off the water surface as well 
as direct signals from GPS satellites. CYGNSS can 
acquire information on wind speed, direction, and 
other aspects of the structure and severity of tropical 
cyclones by examining the specific characteristics of 
GPS signals that are reflected off the ocean's surface.  
A crucial part of the NASA Earth-observing satellite 
constellation known as the Cyclone Global 
Navigation Satellite System (CYGNSS) program is 
the Delay Doppler Mapping Instrument (DDMI). The 
Doppler shift and delay information obtained from 
GPS signals bouncing off the water surface are used 
by the DDMI to compute surface wind speeds[6]. 
Daily NetCDF (.nc format) data corresponding to 
each of the CYGNSS satellites is provided. The 
Doppler frequency shift and time delay function 
make up the DDM. The received signals are analyzed 
and divided into various delay and Doppler bins in 
order to produce a Delay Doppler Map The signals 
are divided by the delay binning according to how 
long it takes for a signal to travel from a satellite to 
the surface of the Earth and back. 

     Four levels of data products from the CYGNSS 
mission are publicly available. NetCDF files are 
created for Level 1, 2, and 3 data products and are 
made publicly accessible via the NASA Physical 
Oceanography Data Active Archive Center 
(PO.DAAC). CYGNSS Level 1, version 2.1 data 
which is available in NetCDF files format in 
PO.DAAC (podaac.jpl.nasa.gov/dataset/CYGNSS_ 
L1_V2.1) is used in this work. CYGNSS full data set 
of 2020, and some data set of 2021 is used for 
training. The rest of 2021 dataset is used for 
evaluation.  

     When computing the coherent component of 
scattered power, the bistatic radar range equation is 
used, which is given as[5]: 
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rlP  is the coherently received SNR power, 

t
rP is the transmitted GNSS signal power, tG is 

transmitter antenna gain, tsR is the range between the 

transmitter and specular reflection point and srR is 

the range between the specular reflection point and 
receiver, rG is the receiver antenna gain, λ is the 

GPS wavelength and Γ  rl is our required parameter, 

which is surface reflectivity[5]. 

     Surface reflectivity, one of the surface 
properties over land, can be used as a stand-in for SM 
by inverting the bi-static radar equations. From the 
above equation, we can solve the surface reflectivity 

of Γ  rl ( ,r effP ) (in dB)[2] [6]: 
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     As the focus of this study was only changes in 
surface reflectivity, ‘4π’ and ‘λ2’ are ignored, the 
surface reflectivity of Pr,eff (in dB) is then[2][6]: 
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     The CYGNSS variables required are: 
sp_rx_gain ( rG ), rx_to_sp range ( srR ), tx_to_sp 
range ( tsR ) and gps_eirp ( t tP G ). These variables are 
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first converted to a dB scale. 
     The topography and vegetation, in addition to 
the SM content, have an impact on the entire DDM. 
We attempt to build methods that learn the pertinent 
characteristics from ddm_snr (surface reflectivity) for 
the SM estimation issue and, by doing so, improve 
SM estimation accuracy. 

     Using the same SMAP projection, we made a 
global cylindrical projection using the Equal-Area 
Scalable Earth (EASE 2.0) 9 km × 9 km grid cell. 
Three equal-area projections and an infinite number 
of potential grid definitions make up the Equal-Area 
Scalable Earth Grid (EASE-Grid). Through the use of 
a hierarchical grid cell structure, EASE-Grid enables 
scalable depictions of the Earth's surface at various 
spatial resolutions maintaining the integrity of the 
equal-area feature. It was designed to be a flexible 
system for consumers of gridded data on a worldwide 
scale, particularly those who utilize remotely sensed 
data; however, it is also becoming more and more 
popular as a standard gridding format for data from 
other sources[15]. 

2.2 SMAP Data 

     The two instruments that the SMAP satellite 
carries are the radiometer and the L-band radar.  The 
radar instrument sends microwave pulses in the 
direction of the ground, then measures the radar 

signals that are reflected back. It can estimate the 
moisture content of the top few centimeters of soil by 
examining the features of the radar returns. The 
radiometer, on the other hand, monitors the Earth's 
surface's natural microwave emissions, which are 
controlled by the amount of moisture in the soil's 
topmost layer. SMAP produces worldwide, 
high-resolution maps of soil moisture levels using 
data from both devices every two to three days. 

SMAP SM is available on a 9-km grid [16]. The 
data is available at nsidc.org/data/spl3smp_e/versions 
/5[17]. The information obtained from the radiometer 
readings is combined and processed to create the 
SMAP radiometer level 3 data output. This data 
product creates relevant and helpful information by 
combining many observations made within a certain 
time frame and spatial extent. The table below 
presents an overview of the SMAP Enhanced L3 
Radiometer system, which provides global daily 9 
km EASE gridded soil moisture data[17]. 

The SMAP Enhanced L3 Radiometer Global and 
Polar Grid Daily 9 km EASE-Grid Soil Moisture, 
Version 5 data include information on vegetation 
water content and surface roughness in addition to 
soil moisture measurements. This extensive dataset is 
a useful resource for a variety of agricultural and 
environmental applications since it offers insightful 
information about these important characteristics. 

Table 1. Overview of SMAP (Soil Moisture Active Passive) [17] 

Platform(s) SMAP 
Spatial Resolution                
Spatial Coverage 
Spatial Reference System(s) 
 
Temporal Resolution 
Temporal Coverage 
Data Format 
Sensor(s) 
Parameter(s) 

9kmx9km 
N: 90S: -85.044 E:190 W: -180 
WGS 84 / NSIDC EASE-Grid 2.0 North (EPSG:6931) 
WGS 84 / NSIDC EASE-Grid 2.0 Global (EPSG:6933) 
1day 
31 March 2015 to present 
HDF5 
SMAP L-band radiometer 
Brightness Temperature, Surface soil moisture 

     Soil moisture (SM), vegetation water content 
(VWC) and surface roughness are derived from the 
data set. 

2.3 Target Region 

     The target region in this study is located 

around Gambella National Park. Gambella National 
Park is found in Ethiopia's Gambella Region. Several 
rivers, notably the Baro, Akobo, and Gilo rivers, cut 
through the park's primary habitats of grasslands, 
wetlands, and savannas. With high temperatures, 
Gambella has a hot and muggy environment. April to 
October is the wet season, at which time a sizable 

https://nsidc.org/data/spl3smp_e/versio
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portion of the park is completely inaccessible. The 
average annual precipitation is one of the highest in 
the country. 

 

Figure 2 Target region location from Ethiopia 
relief location[18] 

3. Methodology 

     Accurate soil moisture measurements are 
essential for managing agricultural activities, 
understanding hydrological processes, and predicting 
drought conditions. Space-borne GNSS-R offers a 
non-destructive and cost-effective method for 
estimating soil moisture content across large areas. 

The retrieval of soil moisture generally follows 
these steps. First, ddm snr is extracted from the 
CYGNSS data and after applying some common 
quality controls, the surface reflectivity is derived 
from the bistatic radar range equation. Soil moisture, 
vegetation water content, and surface roughness are 
extracted from the downloaded data of the SMAP 
satellite. Finally, models are built to develop the 
relationship between the geophysical parameters and 
the reference soil moisture, which leads to soil 
moisture retrieval from the inputs. 

3.1 Data Preprocessing 

     Quality control procedures must be applied to 
the CYGNSS data to filter out inaccurate or noisy 
data points. Signal-to-noise ratio values less than 2 
dB are eliminated. Another quality control applied is 
the removal of observations with an antenna gain on 
the receiver less than zero. The initial step in 
obtaining soil moisture is to calculate surface radar 

reflectance using CYGNSS information. There is a 
DDM that corresponds to each specular point and is 
used to calculate surface reflectivity. The surface 
reflectivity is calculated according to the formula 
derived from the bistatic radar equation. The 
boundaries are set as latN = 8.3; latS = 7.7; lonW = 
33.3; lonE = 34.2. The obtained surface reflectivity 
values are averaged for each month. 

     The SMAP data here is stored in a grid format, 
with each grid representing a specific geographical 
area and having a resolution of 9 kilometers. 
Meanwhile, CYGNSS measures the reflected signals 
from GPS satellites and uses these measurements to 
derive information about wind speed and direction 
over the oceans. Matching the time and space 
between CYGNSS and SMAP data is necessary to 
build our model.  
     Specifically, the CYGNSS reflectivity on the 
same days is taken and aligned with the 
corresponding SMAP grids based on the specular 
point locations. The specular point corresponds to the 
location on Earth's surface where the received signal 
from GPS satellites is at its maximum intensity. Once 
the CYGNSS reflectivity is matched to the SMAP 
grids according to their specular point locations, the 

Figure 1 Soil Moisture Retrieval 
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average reflectivity value is calculated within each 
grid 

 

 

 

 

 

 

 

 

 

 

Figure 3 Time and space matching between 
CYGNSS and SMAP data 

Figure 4 describes the monthly averaged surface 
reflectivity values of our target region in the months 
February, May and September. In theory，reflectivity 

values are typically expressed as a percentage or a 
decimal between 0 and 1, where 0 represents no 
reflection (perfect absorption) and 1 represents total 
reflection (perfect reflection). But in this work，
reflectivity is calculated using the power of reflected 
signal received onboard and the power of direct 
signal estimated by ground GNSS network，so the 
value does not lie in the set of 0 to 1. From the results 
we can see that higher values of reflectivities are 
obtained in the month September. This can be a good 
indication that higher values of soil moisture will also 
be obtained in the same month. Also, the variations of 
surface reflectivities in the different months are 
expected to have similarity with the averaged soil 
moisture values of respective months from the SMAP 
data. 

 

     From Figure 5, it can be observed that the area 
has less soil moisture in May. In August, the regions 
experienced significant precipitation, leading to 
nearly saturated soil conditions in September. As a 
result, the soil moisture content values remained 
consistently high across the entire region. Comparing 
the three months average soil moisture values, the 
values were higher in most part of the region in 
September because the surface was almost wet. All 
year round, there are four seasons in Ethiopia. 
Typically, June to August is considered summer. Due 

to the monsoon season, there will likely be frequent 
thunderstorms and heavy rain. It is essential to 
agriculture because it maintains soil moisture levels 
and supplies water for irrigation all year long. 
summer's abundant rainfall contributes to the soil's 
saturation, which supports agricultural growth. For 
basic crops including millet, sorghum, teff, and maize, 
this is a critical time of year. September to November, 
is when spring arrives.  The change from the wet to 
the dry season is what defines it. Rainfall is less 
frequent throughout this season, which causes the soil 
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Figure 4 CYGNSS monthly averaged surface reflectivity of the target region in 2020 a) February b) May 
c) September 
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to gradually become less wet. But until the dry 
season arrives, the summer's leftover rainfall helps 
late-season crops thrive and keeps the soil somewhat 
wet. Winter, which lasts from December to February, 
is colder than other seasons. Most of Ethiopia 
receives little to no rainfall in this season. The 
amount of moisture in the soil decreases when there 
isn't any rain. This causes the soil to become arid and 
dry, which makes it difficult for crops to thrive 
without irrigation. Autumn lasts from March to May. 
The arid conditions of the Bega season are somewhat 
alleviated by this season. There is short but 
significant rainfall, which contributes to the soil's 
increased moisture content. This is the time of year 
when farmers sow crops like wheat, barley, and 
legumes. So, high values of soil moisture are 
expected during the summer and the beginning of the 
harvest season. 

3.2 Neural Network 

Machine Learning is used to try to create normal, 
nonlinear relationships between input and output 
data[13]. As the quantity of data provided grows, ML 
can automatically adapt and learn. The SM retrieval 
procedure is known to entail nonlinearity, however. 
In order to resolve this, we looked at the possible use 
of a non-parametric, non-linear machine learning 
algorithm, namely ANN. 

In neural networks, the process of standardizing 
or scaling the input data to a common range is 
referred to as "normalization of data sets." It is a 
crucial stage in the preprocessing process that 
enhances neural network performance and 
convergence. So, normalization is performed on all 
the data sets.  Surface radar reflectivity from 
CYGNSS observations, VWC to represent the 
vegetation's canopy, and roughness generated from 
the SMAP SM 9km data set are input characteristics 
to the learning process. Three successive layers of a 
densely connected neural network make up the model. 
Trial and error was used to determine the number of 
units in the first two levels, with the realization of 
good results acting as the stop condition. The last 
layer has just one unit, as we want the network to 
predict a single value. Surface radar reflectivity, 

VWC, and surface roughness are the three inputs that 
make up the input layer. The predicted SM is the only 
node in the output layer.  

Mean squared error (MSE) has been chosen as the 
loss function throughout the model compilation 
process since our goal is to minimize the discrepancy 
between the model's projected values and the actual 
expected values. We further chose to measure the 
mean absolute error in the metrics to ascertain how 
much the model prediction deviates from the 
projected values. After the model is constructed, we 
fit the training data into it. We decided to use an 
8-batch size and 70 epochs to train the model. We 
evaluate the model on the test data set. 

4. Results and discussion 

To assess the effectiveness of the developed ANN 
model, an analysis aimed to examine the relationship 
between the soil moisture data obtained from the 
CYGNSS and SMAP remote sensing systems is 
performed in Figures 6 and 7.  

 

Figure 6 predicted one-month average Soil moisture   

By comparing the CYGNSS soil moisture (SM) 
measurements with the SMAP SM data, the 
correlation analysis provided insights into the 
performance of the ANN model in predicting and 
capturing soil moisture patterns. 

It has been noted that good alignment exists 
within the CYGNSS soil moisture (SM) data. 
Specifically, lower levels of soil moisture have been 
identified in the western part of the area, while higher 
levels are evident in the lower central and 
north-eastern parts of the selected region in this 
month. This trend is consistently observed in both the 
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CYGNSS-derived soil moisture and the reference 
SMAP soil moisture values for this month. The 
observed patterns indicate a significant correlation 
between the two datasets, highlighting the reliability 
of the CYGNSS SM data and its agreement with the 
SMAP SM measurements during the specified time 
frame. 

 

Figure 7 Reference soil moisture from SMAP of the 

same month 

Metrics like mean square error (MSE) and mean 
absolute error (MAE) are often used to assess how 
well an ANN is doing. The average squared 
difference between the expected and actual outputs is 
measured by the MSE. The computation involves 
calculating the mean of the squared deviations 
between every anticipated and actual output. Because 
of the squaring procedure, MSE prioritizes greater 
mistakes. Better accuracy and a tighter match 
between the expected and actual values are indicated 
by a lower MSE. The average absolute difference 
between the expected and actual outputs is measured 
by the MAE, on the other hand. The average of the 
absolute disparities between each expected and 
matching actual output is used to compute it. MAE 
does not take the direction into account, treating them 
all equally. The developed model (Figure 8) is 
assessed and obtained a result of Mean Squared Error 
(MSE): 0.004 m3/ m3 and Mean Absolute Error 
(MAE): 0.052 m3/ m3. This shows a good prediction 
value for soil moisture. 

The Pearson correlation coefficient is calculated 
from the actual and predicted values shown in Figure 
8. The model has a correlation coefficient R of 0.79 
on the test samples. The result shows a greater 
relationship between the geophysical parameters used 
as an input in the model and soil moisture values. 

Also, from the extracted surface reflectivity value, we 
can observe that CYGNSS is a promising tool for soil 
moisture retrieval because the surface reflectivity 
values were higher in September indicating a wet 
season. 

 

Figure 8 Scatter of actual and retrieved SM 

5. Conclusion 

In summary, this study has significantly improved 
our understanding of the connection between surface 
soil moisture and CYGNSS data by utilizing an 
advanced machine learning technique with high 
spatial and temporal resolution. Through the creation 
of a model for CYGNSS dataset training and soil 
moisture content retrieval using Artificial Neural 
Networks (ANN), we have demonstrated the 
capability of this method to enhance the accuracy of 
satellite-based soil moisture estimation. 

Our results show a strong agreement between the 
soil moisture data processed from CYGNSS through 
ANN and the SMAP data, confirming the 
effectiveness of our proposed approach. The Mean 
Absolute Error (MAE) and Mean Squared Error 
(MSE) values of 0.052 m³/m³ and 0.004 m³/m³, 
respectively, underscore the precision and reliability 
of our developed model. This emphasizes the robust 
and versatile nature of ANN, highlighting its critical 
role in improving the accuracy of satellite-based soil 
moisture estimation. 

     While CYGNSS was originally designed to 
track tropical ocean winds, our study reveals its 
potential for regional soil moisture retrieval. Even 
with these promising results, it's crucial to remember 
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that CYGNSS research for soil moisture 
measurement is still in its early stages. It will take 
further research and validation to fully evaluate 
accuracy, improve retrieval algorithms, and develop 
reliable methods. 

The ongoing exploration of CYGNSS-based soil 
moisture retrieval holds great promise for 
applications in agriculture, hydrology, and climate 
studies. Continued research efforts will deepen our 
understanding of the complex relationship between 
CYGNSS data and surface soil moisture, contributing 
to the development of robust and accurate 
satellite-based monitoring systems. As we navigate 
through the initial stages of this research, fostering 
collaboration and innovation is very important to 
unlock the full potential of CYGNSS in soil moisture 
estimation. 
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