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Abstract: The deformed or vibratory behaviors will 

exceed the threshold of building under the influence 

of external factors, so that it is necessary to monitor 

the variety of deformed body. Accelerometer is 

widely used in deformation monitoring due to small 

size and high sampling rate. In this paper, the 

fractional Kalman filter is introduced to update the 

accelerometer data. The influence of the order of 

different fractional derivatives on the filtering results 

of the accelerometer is studied and compared. The 

results show that when the system noise and 

measurement noise are fixed, using different 

derivative orders and comparing the filtering results 

under different derivative orders, the root mean 

square error of the fractional filtering model is 

smaller. Compare the filtering results under different 

noise variances. By comparing the errors of the two 

models, the image shows that the fractional Kalman 

filter model has better filtering performance than the 

standard Kalman filter model. 

Keywords: Accelerometers, Deformation monitoring, 

Fractional model, Kalman filtering. 

1. Introduction 

The deformed phenomenon widely exists in many 

different disciplines and engineering fields. 

Deformation data cannot be accurately described 

because of its complexity and irregularity[1,2]. There 

is a certain correlation between these data. The 

deformation of the building cannot be avoided. The 

deformed body is usually in a state of equilibrium. 

But the internal structure of the building will change 

under the influence of extreme external environment, 

leading to the abnormal state of the building, which 

will cause continuous damage to the building 

structure[3]. Accelerometer is widely used in 

structural monitoring, which has the advantages of 

small size, light weight, high sampling rate and so on. 

It is sensitive to higher frequency deformation 

information, but it is difficult to detect lower 

frequency quasi-static deformation information[4]. 

The deformation law is studied and predicted through 

long-term monitoring results[5,6]. 

As a classical filtering algorithm, Kalman filter is 

widely used in various theoretical research and 

engineering[7]. The standard Kalman filter is easy to 

cause update interruption and divergence of filtering 

results when removing abnormal observation 

information. Some basic problems need to be solved 

urgently in control theory and practical engineering, 

such as observation and controller design. In recent 

years, it has been observed that fractional derivative 

is more accurate to describe certain systems[9，10] with 

the rapid development of fractional systems[8], such 

as rheological model[11], chaotic model[12] and fractal 

model. Therefore, fractional derivative is introduced 

into the existing Kalman model to reduce the 

influence of noise on the position measurement error 

of accelerometer and obtain higher accuracy data[13].  

Accelerometers are usually applied in actual 

deformation monitoring of building bodies. The 
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fractional Kalman filter model is established in this 

paper in order to process the data obtained from 

accelerometers preferably. Through the processing 

and analysis of the deformation monitoring data of 

the two models, it is proved that the fractional 

Kalman filtering model can get better filtering results 

under the appropriate order by comparing with the 

standard Kalman filtering model. 

2. Fractional Kalman filtering model 

2.1 Kalman filtering 

Kalman filter is a state vector estimation 

algorithm based on a set of observed values and 

discrete model information. The discrete model of the 

system is generally described by differential 

equation: 

kk
k BuAx

dt

dx
                        (1) 

The subscript k represents the time corresponding to 

tk. A linear discrete state equation can be obtained by 

solving the differential equation and discretizing it. 

For the standard Kalman filter model, the following 

discrete linear system can be established: 

kkkk wBuAxx 1                    (2) 

kkk vCxy                            (3) 

Where xk is the state vector, uk is the system input, wk 

is the system noise, vk is the measurement noise, and 

yk is the observation equation. 

The optimal estimation of Kalman filtering can be 

obtained from the following set of  recursive 

formulas. 
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Among them, kP
~
and kP are the prior and posterior 

covariance matrices, respectively; kx~ , kx̂ are prior 
and posterior estimates, respectively; kK is the 
Kalman gain. 

When the state of the previous moment is known, 

the prior estimated value can be modified by the 

observed value y to obtain the state estimation of tk. 

2.2 Fractional Kalman filtering 

In the process of discretization of the standard 

Kalman filter state model, The fractional G-L 

difference is given by[13]: 
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Where n∈R is the order of fractional difference, h is 

the sampling time interval, k is the number of 

samples for calculating derivative, The factor (n; j) 

can be obtained from: 
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In actual model building, there will be multiple 

equations, and different orders can be taken for 

different equations. For cases where the order of the 

equations is different, that is, when dealing with 

equation system problems, the generalized definition 

is given by[13]: 
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kkk vCxy                    

where Ad=A - I (where I is the identity matrix), and 
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n1, n2,..., nN is the order of the state equation, and N is 

the number of state equations. The covariance and 

optimal estimation can be obtained to establish a 

fractional Kalman filtering model by using a 

calculation method, which is similar to traditional 

Kalman filtering models: 
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with the initial conditions 
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3. Construction of accelerometer filtering 

model 

The Kalman filtering model is a continuous 

correction and prediction process that can predict 

dynamic systems. The state space equation of the 

model during the measurement process can be 

expressed as[14]: 
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In the equation, x, x , x are defined as displacement 

velocity acceleration respectively, a~ represents 

measured acceleration, and w is the system noise, a  

is the system noise, ηa(k) ~ N(0,q), q is the variance 

of acceleration. 

The model observation equation can be expressed 

as: 
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where xm represents the measurement displacement 

and v represents the measurement noise, ηd(k) ~ 

N(0,r), r is the displacement variance. 

According to equations (12) and (13), the state 

model of a two-dimensional accelerometer can be 

represented: 
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wherein xk represents the displacement at kT, k 

represents the velocity at kT, z(k) represents the 

observation results at kT, w(k) represents the system 

noise at the kT time, v(k) represents the measurement 

noise at kT, and T is the sampling interval of the 

accelerometer. 

The accelerometer is the only noise source in 

state time updates, whereas the process noise matrix 

Q and measurement noise matrix R of Kalman 

filtering can be constructed through the law of error 

propagation: 
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4. Data processing 

The following introduces the processing route of 

fractional Kalman filtering. Calculating velocity and 

displacement information based on accelerometer 

data, establishing a discrete model of fractional 

Kalman filtering based on velocity and displacement 

information, and updating the established filtering 

model to obtain the updated accelerometer data. The 

obtained accelerometer data are used for the next 

filtering. 
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Figure 1: Flow chart of accelerometer fusion Kalman filtering algorithm 

It is inevitable to be affected by various factors in 

the process of high precision measurement, such as 

light intensity and temperature. The data may contain 

a lot of random noise, which will have a great impact 

on deformation prediction and analysis. In this paper, 

by analyzing the characteristics of the model 

deformation data, fractional Kalman filter is used to 

denoise the observed data, eliminate the random 

noise existing in the observed data, and make the 

observed data closer to the real data, thus improving 

the accuracy of the data. 

Calculate the root mean square error (RMSE) 

  
n

kk xx
n

2 ˆ
1
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between the filtered data and the real data to evaluate 

the denoising effect of fractional Kalman filtering. 

Usually, the smaller the RMSE value, the better the 

denoising effect. 

 

 

5. Case analysis 

5.1 Fractional order comparison 

We test the accelerometer model according to the 

model established in Section 3. When the fractional 

order is different, the state equation of fractional 

Kalman filter is also different. In order to better 

compare the difference of fractional state model in 

different order. Figure 1 shows the comparison of 

fractional state models when the measurement error 

is very small, that is, only systematic error is 

considered. The state models of different orders are 

compared in Figure 1. It can be seen that the 

difference of state models under different orders is 

observed. When n2 is fixed at order 0.9 and n1 

changes from 0.9-0.1, the change of fractional model 

becomes smaller and smaller, and the higher the order 

is, the closer the result of fractional state model is to 

the real value. 

5.2 Comparison between Fractional Models and 

Kalman Filtering 

In order to compare the difference between the 

fractional discrete model and the standard Kalman 

filter model, the input value uk is taken as a periodic 

function. 
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where f1=1.2HZ,f2=0.3HZ. 

When the system noise and the observation noise 

are fixed, the filtering results of the equations of state 

of the two models are compared. Table 1 shows the 

error comparison between Kalman filter model and 

state model of fractional-order model under different 
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fractional-order derivatives. By changing the order of 

fractional derivative, the errors of standard filter 

model and Kalman filter model are compared. In the 

table below, when the order of fractional derivative is 

0.9, 0.8 and 0.7, the error of the fractional model 

gradually increases, but the error of the fractional 

state model is always smaller than that of the 

standard Kalman filter model. It is proved that the 

established fractional state model can describe the 

observed data well and has better state estimation 

ability. 

 

 

 

 

Figure 2: State Model of Fractional Kalman Filter Model with Different Fractional Orders 

Table 2 shows the comparison of root mean 

square error (RMSE) of the results of standard 

Kalman filtering and fractional filtering in different 

noise measurement under the same fractional 

derivative order. The following table shows the 

RMSE comparison between the fractional model and 

the standard Kalman filter model when the order is 

0.9 and the measurement noise is 0.1, 0.2 and 0.3. 

When the error variation is small, the RMSE of both 

the standard Kalman filter and the fractional-order 

model becomes smaller, but the RMSE of the 

fractional-order model is smaller than that of the 

standard filter model, and the fractional-order model 

has a better effect when the measurement error is 

larger. 

Figure 3 shows the fractional discrete model 

established. The prediction is the result of the 

fractional discrete model, actual is the standard 

discrete model. It can be seen from the figure that 

compared with the state equation of the standard 

Kalman filter model, the fractional model can also 

describe the state model well. By introducing 

fractional order, the results of the model can converge 

faster, and the fractional model can get closer to the 

real value faster. Compared with the standard Kalman 

filter model, the discrete linear model obtained by the 

fractional  model not only considers the influence of 

the last observed value on the current value, but also 

the influence of the observed value at other times on 

the current value. In this way, not only the established 

model and error, but also the real value obtained by 

the equation of state at the previous time should be 

considered to affect the prediction result of the 

equation of state. This is why fractional model can 
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converge faster than standard Kalman filter model. 

Table 1: Comparison between Kalman Filter State 

Model and Fractional Model State Model 

Position 

information 

（cm） 

The order 

of 

fractional  

models 

Error of 

Kalman 

Filter State 

Model 

Errors in 

Fractional 

State 

Models 

1 0.9 6.4595 3.4685 

1 0.8 6.4595 4.2385 

1 0.7 6.4595 4.6072 

Table 2: Comparison of filtering RMSE values 

between Kalman filtering state model and 

fractional model 

Order of 

fractional 

models 

Measurement 

error 

vk 

RMSE 

of 

Kalman 

filtering 

RMSE of 

Fractional  

Models 

filtering 

0.9 0.3 0.8543 0.6795 

0.9 0.2 0.3993 0.3797 

0.9 0.1 0.3456 0.2497 

According to the periodic function of acceleration, 

the result of x2 (velocity) can be calculated, as shown 

in Figure 4 below, which is the actual and predicted 

velocity values respectively. Figure 5 shows the 

calculated velocity error of the fractional filtering 

model. 

Figure 6 (fractional order) and Figure 7 (fractional 

and standard Kalman filtering) show the 

displacement errors. By calculating the errors 

between the two, the following figure is obtained, 

and the RMSE values before and after filtering are 

calculated for comparison. According to Figure 6, it 

can be seen that the fractional filtering model can 

reduce the interference of noise terms on the results, 

indicating that the fractional model has good filtering 

performance. Figure 7 compares the errors of the 

fractional model and the standard filtering model. It 

can be seen from the figure that the fractional 

Kalman filtering model has smaller errors compared 

to the standard filtering model, and the error 

fluctuation of the fractional model is smaller, that is, 

the rate of error change is smaller. This is mainly due 

to the memory of the fractional model, and the 

changes of the fractional model are smaller compared 

to the standard Kalman filtering model. 

Figure 8 shows the mean square error results 

between the optimal estimation and state equation of 

the fractional model and the standard model 

simulated at 0.9 orders. After multiple simulations, it 

can be seen that the fractional model can provide a 

result with smaller errors compared to the standard 

model. At the same time, a standard Kalman filtering 

model was provided for comparison, and the surface 

fractional model showed better filtering results. 

6. Conclusion 

In this paper, a fractional Kalman filter model is 

obtained based on the standard Kalman filter model 

and applied to the accelerometer model. Through 

numerical simulation, it is proved that the fractional 

state model can simulate the accelerometer state well. 

When the fractional order and measurement error are 

changed, the filtering results of the fractional Kalman 

filter and the standard filter model are compared, and 

the results of RMSE are compared. It is proved that 

fractional-order Kalman filtering is more stable than 

integer filtering, and the fractional-order discrete 

model established has better convergence. In this 

paper, the results of different orders are compared to 

verify the reliability of the fractional-order model, 

and the fractional-order model has a better filtering 

effect. 
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Figure 3: Displacement after fractional model filtering 

 
Figure 4: Velocity after fractional model filtering 
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Figure 5: Velocity error after fractional model filtering 

     
Figure 6: Error after fractional model filtering 
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Figure 7: Error after filtering 

 

Figure 8: Comparison of mean square error between Kalman filtering model and fractional model 
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