
113 

 

Journal of Global Positioning Systems (2023) 

Vol. 19, Joint No. 1 & No. 2: 113-125 

DOI:10.5081/jgps.19.1.113 

 
 

Research on modeling and predicting of BDS3 satellite 

clock bias using the attention mechanism-based LSTM 

(AttLSTM) neural network model 
Jiaxing Li1, Kaifei He1, *, Tülay Kaya Eken2, Haluk Özener2, Xiang Xu1, Xiaopeng Lu3, Kai Ding1,4, Xuchen Ma1 

1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, 

China 

2. Kandilli Observatory and Earthquake Research Institute (KOERI), Boğaziçi University, Istanbul 34684, Turkey 

3. Huzhou Spatial Planning Compilation and Research Center, Huzhou 313000, China 

4. Shandong Vocational College of Information Technology, Weifang 261061, China 

* Corresponding author: Kaifei He, kfhe@upc.edu.cn 

Abstract: In the Global Navigation Satellite System 

(GNSS), the satellite clock bias (SCB) plays an 

important role in the application of real-time precise 

point positioning (RT-PPP). Based on the operation 

of Beidou satellite global service, it is very important 

to establish a reliable Beidou SCB prediction model. 

In this research, an attention mechanism-based long 

short-term memory neural network (AttLSTM) 

model is applied to SCB prediction. The attention 

mechanism introduced in modelling can make the 

model pay less attention to useless information 

through weight allocation. In this paper, the 

BeiDou-3 Navigation Satellite System (BDS-3) 

satellite precision clock product provided by GFZ is 

used for clock prediction experiments. The proposed 

AttLSTM model, long short-term memory neural 

network (LSTM) model and quadratic polynomial 

(QP) model are compared and evaluated, and 12h and 

24h SCB prediction experiments of BDS-3 satellite 

are set up. The results show that AttLSTM model can 

achieve high SCB prediction accuracy, and the 

averaged prediction accuracy of 12h and 24h can 

reach 1.41ns and 1.75ns. Compared with LSTM and 

QP models, the prediction accuracy of AttLSTM 

model is improved by 26.1%, 38.4% for 12h and 

29.1%, 43.1% for 24h, respectively. Then, the clock 

bias predicted by the three models is applied to the 

static PPP positioning experiment, respectively. 

Through the analysis of the positioning results of 15 

MGEX stations, the averaged positioning accuracy of 

AttLSTM model in the East, North and Up directions 

can reach 0.074m, 0.019m and 0.154m, respectively. 

Compared with LSTM and QP models, the 

positioning accuracy of AttLSTM model is improved 

by 42.5% and 44.4% in the East direction, 44.7% and 

58.9% in the North direction, and 21.7% and 21.8% 

in the Up direction. 

Key words: BDS-3 satellite; Satellite clock bias 

prediction; Long short-term memory neural network; 

Attention mechanism; PPP 

1. Introduction 

In global navigation satellite system (GNSS), 

the accuracy of real-time precise point positioning 

(RT-PPP) largely depends on the precise orbit and 

clock bias of the satellite. Providing users with high 

precision real-time products is the key to realize 

RT-PPP [1, 2]. At present, the accuracy of the 
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ultra-rapid orbit is about 5cm, but the accuracy of the 

ultra-rapid satellite clock is about 3ns, which cannot 

meet the requirements of RT-PPP [3]. Since 2013, the 

real-time service (RTS) has been launched by the 

International GNSS Service (IGS), which uses the 

network to provide users with real-time orbit and 

clock correction [4]. At present, RTS data stream 

products have been widely used in RT-PPP and other 

aspects, but there are still some problems such as 

time delay, data interruption and incomplete 

correction information [5-9]. For users, when RTS data 

transmission is interrupted due to poor 

communication status, it will seriously affect the 

application of RT-PPP [10]. Therefore, it is crucial to 

explore the prediction method of satellite clock bias 

to meet the requirements of RT-PPP. 

Currently, the common satellite clock bias 

prediction models include quadratic polynomial (QP) 

model [11], grey model [12], Kalman filter model [13] 

and so on. These prediction models have certain 

defects. The QP model is sensitive to outliers, which 

will affect the prediction results [14]. Grey model is 

only suitable for short- and medium-term prediction 

and exponential growth prediction [15]. The Kalman 

filter model cannot achieve the optimal estimation 

effect in the nonlinear process [16, 17]. In addition, 

satellite clock bias of the BeiDou-3 Navigation 

Satellite System (BDS-3) completed in July 2020 [18] 

has complex characteristics, and the prediction 

accuracy can still be improved.  The BDS-3 satellite 

has three orbit types: GEO, IGSO and MEO. 

Compared to MEO satellite, GEO and IGSO satellite 

clock bias have different periodic terms. Compared 

with GPS satellite clock bias, BDS satellite clock bias 

has an obvious nonlinear system bias. However, 

neural networks are more sensitive to nonlinear 

problems and can overcome the limitations of 

traditional models to achieve more accurate 

predictions. The wavelet neural network model was 

applied to satellite clock bias prediction, and it 

proved its reliability in clock bias prediction [19]. The 

long short-term memory network (LSTM) model was 

applied to satellite clock bias prediction by He et al. 

(2023), and the results show that the LSTM model 

has more obvious advantages than the QP model and 

ARIMA model in clock bias prediction [20].  

In order to improve the prediction accuracy of 

deep neural networks (DNN), the attention 

mechanism has been developed [21]. Attention 

mechanism was originally used in the field of 

computer vision [22]. It can reduce the attention of the 

model to useless information and emphasize the role 

of important features through weight allocation. And 

many studies have proved that the attention 

mechanism can improve the prediction accuracy and 

reliability of time series modelling [23-25]. Therefore, 

an attention mechanism-based long short-term 

memory neural network (AttLSTM) model is applied 

to SCB prediction in this study. Additionally, the 

AttLSTM model, LSTM model and QP model are 

compared and analysed in the clock bias prediction 

performance of BDS-3 satellite, and 15 MGEX 

stations are used to verify the usability of the clock 

bias prediction model in PPP applications. 

2. Attention mechanism-based LSTM 
neural network 

The proposed AttLSTM model, which uses the 

attention mechanism to adaptively find the key 

features in the input sequence, is applied in the 

BDS-3 satellite clock bias prediction. In this section, 

the model will be described in detail. 

2.1 LSTM neural network 

LSTM neural network model is a special recurrent 

neural network, which can solve the problem of 

gradient disappearance and gradient explosion in 

traditional neural networks [26]. The LSTM cell 

architecture is shown in Figure 1. Each cell of the 

LSTM model has several gates: input gates ti , forget 

gates tf , and output gates tO . The input gate 

controls how much information can flow into the 

memory cell, the forget gate controls how much 

information flows from the previous memory cell 

into the current memory cell, and the output gate 

controls how much information flows from the 

current memory cell into the hidden state. 
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Fig.1 the architecture of a LSTM cell 

The LSTM network introduces an internal state 

that then controls the transfer of information through 

input gates, forget gates and output gates. In the input 

gate, the input part is the matrix 
1[ , ]t th x , which 

consists of two parts. 1th   is the network input at the 

previous time instant, and the tx  represents the 

network input at the current time instant. The weight 

matrix iW  of the input gate, corresponding to the 

weights of the input part, is also composed of two 

parts, and the bias term of the input gate is ib . Then 

the output ti  of the input gate is calculated as 

follows: 

 1( [ , ] )t i t t ii W h x b     (1) 

If we look at the forget gate, the input part of the 

forget gate is also 
1[ , ]t th x . The weight matrix fW  

of the forget gate is also composed of the 

corresponding weights, and the bias term of the 

forget gate is fb . Then the output tf  of the forget 

gate is calculated as follows: 

 1( [ , ] )f t t ftf W h x b     (2) 

In the output gate, the input part is again 
1[ , ]t th x . 

The weight matrix oW  of the output gate is also 

composed of the corresponding weights, and the bias 

term of the output gate is ob . Then the output tO  of 

the output gate is calculated as follows: 

 1( [ , ] )o t t otO W h x b     (3) 

The input to calculate the temporary cell state tg  

is again 1[ , ]t th x . The weight matrix is gW , the 

activation function is the tanh  function, and the bias 

term is gb . Then the calculation equation of tg  is 

as follows: 

 1( [ , ] )g t t gt tanhg W h x b    (4) 

The cell state tc  is jointly determined by tf , 

1tc  , ti  and tg . The operator   is the 

elementwise multiplication. And tc  is calculated as 

follows: 

 1t t it tf gc c i    (5) 

Finally, the final output value th  of the LSTM 

network can be calculated as follows: 

 tanh( )t t th O c   (6) 

2.2 Attention mechanism 

Attention mechanism was originally used in the 

field of computer vision, which can reduce the 

model's attention to useless information and 

emphasize the role of important features through 

weight allocation [27, 28]. The architecture of attention 

mechanism is shown in Figure 2. 

 

Fig. 2 the architecture of attention block 

Attention mechanism is essentially a weighting 
method, which is calculated by query vector and 
key-value pair [29].  

The context vector jd  can be computed from 

jmh  and j , as shown in the following equation: 
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where at the time j ( j =1,2,…, n , and n  is the 

length of the input time sequence), jmh  is the 

hidden output of the encoder, j  is the key vector 

corresponding to the input. j can be calculated by 

the following equation: 
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wherein jne  can be computed from the 

corresponding equation: 
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where jK  is the attention score, Q  is the query 

vector, jne  is the similarity between the thj  key 

vector and query vector, m  is the hidden size of the 

encoder, jh is the hidden state of the encoder at time 

j , kW  and qW  are the attention weight matrices 

randomly generated with a normalized Gauss 

distribution. 

2.3 AttLSTM neural network model for satellite 

clock bias prediction 

Figure 3 shows the architecture of the attention 

mechanism-based LSTM (AttLSTM) neural network 

model proposed in this paper:  

 
Fig. 3 the architecture of AttLSTM model 

The architecture of AttLSTM model mainly 

includes the preprocessing of input data, the LSTM 

neural network layer, the attention mechanism layer, 

the fully connected layer and the prediction value 

output. AttLSTM performs attention mechanism on 

the output data of the LSTM layer considering the 

influence of the adjacent epoch on the satellite clock 

bias at the current time. A fully connected layer is 

constructed by a linear transformation function and 

Relu()  activation function, and the weight matrix 

W  is obtained by using the Softmax()  function. 

The initial sample of the input and the weight vector 

are multiplied to obtain the new sample, and finally 

the output of the attention mechanism layer is 

obtained. After that, a fully connected layer is 

constructed to convert the output of the attention 

mechanism layer into the target value to be 

predicted. 

Time series prediction includes one-step 

prediction and multi-step prediction. One-step 

prediction refers to predicting only one value in 

each prediction, while multi-step prediction refers 

to predicting multiple values in each prediction, and 

the prediction error of multi-step prediction 

accumulates as the number of steps increases. 

Therefore, there is a serious error accumulation 

problem in multi-step prediction, and the data needs 

to be processed to make it a one-step prediction 

problem. Hence, data preprocessing is required 

before training with the AttLSTM model. The 

specific process is as follows: 1) Data single 

difference processing: It means taking difference of 

the data between epochs, that is, subtracting the 

previous data from the current data. It can eliminate 

possible systematic errors in the original clock bias 

sequence to a certain extent, which is conducive to 

the fitting and prediction of clock bias data. 2) 

Construct satellite clock bias time series input data: 
The clock bias data 1 2{ , , }ny y y  after single 

difference is constructed as m  time series with 

vector dimension l , where  the length of the time 
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series n  is 1n m l   . 3) Data scaling and 

constructing supervised learning data: The 

constructed input m  time series are normalized 

and mapped to the target range [-1,1], which can 

improve the accuracy and convergence speed of the 

model. In each constructed time series of length l , 

the last data is used as the label for training, making 

it a one-step prediction problem. Finally, the 

sequence of the predicted clock bias is obtained by 

inverse transformation of the obtained output 

values. 

Considering the efficiency and accuracy of the 

model, the input vector dimension parameter l  is 

set to 20 in the experiment. In the training process, 

the model weight is initialized by random 

initialization method, the learn rate is 0.01, the 

epoch is 1000, and the batch size is 64. Adam 

optimizer is used in the model because it can 

replace the traditional stochastic gradient descent 

algorithm. It has the advantages of computational 

efficiency and can realize the adaptive adjustment 

of learning rate. The evaluation function uses the 

root mean square error. 

3. Prediction precision analysis  

In order to study the satellite clock bias 

prediction accuracy of AttLSTM model, the MGEX 

precision clock products provided by German 

Research Centre for Geoscience (GFZ) are used to 

conduct the BDS-3 satellite clock bias prediction 

experiment. The time span of the data is from 

November 16, 2022 to November 19, 2022 with 30 

s sampling interval. In the experiment, the one-day 

BDS-3 satellite clock bias is used as the training 

data, and the next day’s 12 hours (12h) and 24 

hours (24h) satellite clock bias are predicted. 

AttLSTM model is compared with LSTM model 

and QP model. The MGEX precision clock bias is 

used as the reference value, and the root mean 

square (RMS) error is used as the statistics of the 

prediction accuracy. The calculation formula for the 

RMS can be expressed as: 

 1

ˆ ˆ( )( )
n

i i i i
i

C C C C
RMS

n


 
  (12) 

where iC  is the predicted value of SCB at the 

moment i , and ˆ
iC  is the reference value of SCB 

at the moment i . 

Figures 4 and 5 show the comparison of the 

prediction accuracy of different models for each 

BDS-3 satellite under 12h and 24h prediction time, 

respectively.  

 

Fig. 4 The mean prediction accuracy of the BDS-3 satellite clock bias of 12h 
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Fig. 5 The mean prediction accuracy of the BDS-3 satellite clock bias of 24h 

According to the prediction accuracy of different 

models in Figures 4 and 5, AttLSTM model has the 

best prediction accuracy for each satellite, and in 

most cases significantly better than LSTM model 

and QP model. In addition, the change of RMS 

predicted by AttLSTM model for each satellite is 

more stable, while the change of RMS predicted by 

LSTM model and QP model for different satellites 

is larger. At the same time, with the increase of 

prediction time, AttLSTM model can still maintain 

high prediction accuracy, which is better than 

LSTM and QP models, and has high stability. 

The prediction residual values reflect the 

prediction accuracy, and the greater deviation from 

0 indicates the worse prediction result. In this paper, 

the prediction residual values of four satellites C22 

(rubidium clock), C39 (hydrogen clock), C41 

(hydrogen clock) and C45 (rubidium clock) are 

selected for analysis, and they are shown in Figure 

6. 

 

Fig. 6 Residual diagram of 4 satellites predict of 24h 

Figure 6 shows that the residuals predicted by 

AttLSTM, LSTM and QP models for the four 

satellites clock bias have different changes. The 

residuals predicted by AttLSTM model of the four 

satellites clock bias are closer to 0, which is closer 

to the reference value of the clock bias. However, 

LSTM and QP models deviate more from the 

reference value than AttLSTM model, and the 

deviation degree of LSTM and QP models is 

different due to the influence of different satellites. 
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To analyze the prediction accuracy of the models, 

the mean prediction accuracy of BDS-3 satellite 

equipped with the passive hydrogen maser (PHM) 

and rubidium atomic frequency (RAF) is calculated 

in this paper, as shown in Table 1:  

Table 1 Statistics of the prediction accuracy /ns 

Types of 

atomic 

12h 24h 

QP LSTM AttLSTM QP LSTM AttLSTM 

RAF 2.37 2.0 1.45 3.12 2.57 1.80 

PHM 2.23 1.84 1.38 3.05   2.40 1.73 

Mean 2.29 1.91 1.41 3.08 2.47 1.75 

Analysis of the statistical results in Table 1 shows 

that: 

1) In the 12h and 24h prediction experiments, the 

proposed AttLSTM model has higher 

prediction accuracy than LSTM and QP 

models, while LSTM model has higher 

prediction accuracy than QP model. With the 

increase of prediction time, the error will 

gradually accumulate and the prediction 

accuracy will decrease with the increase of 

time. 

2) The prediction accuracy of SCB is related to 

the different types of satellite atomic clocks as 

well. In the 24h prediction experiment, the 

average prediction accuracy of the hydrogen 

clock under the QP model, LSTM model and 

AttLSTM model reaches 3.05ns, 2.40ns and 

1.73ns, while the rubidium clock reaches 

3.12ns, 2.57ns and 1.80ns respectively. It can 

be seen that the prediction accuracy of the 

satellite equipped with hydrogen clock is 

slightly better than that of the rubidium clock. 

3) In the prediction experiment of 12h, the 

averaged prediction accuracy of AttLSTM 

model is 1.41ns, which is 26.1% and 38.4% 

higher than LSTM and QP models, 

respectively. Besides, in the prediction 

experiment of 24h, the averaged prediction 

accuracy of AttLSTM model is 1.71ns, which 

is 29.1% and 43.1% higher than LSTM and QP 

models, respectively. It shows that the 

AttLSTM model proposed in this paper can 

greatly improve the prediction accuracy of 

SCB. Moreover, with the increase of 

prediction time, the prediction accuracy of 

AttLSTM model is better than that of the 

LSTM and QP models. 

4. Positioning results and analysis 

In order to verify the availability and accuracy of 

AttLSTM, LSTM and QP models in PPP, these 

three models are applied to 24h BDS-3 satellite 

clock bias prediction, and 15 MGEX stations are 

selected for static PPP experiments on November 

17, 2022. The distribution of these stations is shown 

in Figure 7. The MGEX precise orbit products are 

used and the clock bias predicted by these models 

are chosen separately in PPP for all selected MGEX 

stations. The detailed PPP processing model is 

summarized in Table 2. 
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Fig. 7 Distribution of selected 15 stations 

The precise coordinates from the SINEX 

solutions are used as references for PPP 

performance analysis to obtain the positioning 

errors of each station in the East, North, and Up 

directions. In order to intuitively analyze the 

influence of prediction clock bias on positioning, 

the static PPP positioning errors of NNOR and 

PARK stations are selected for analysis on 

November 17, 2022 (Figures 8 and 9). 

Figures 8 and 9 show the static PPP positioning 

results of NNOR and PARK stations, and indicate 

the convergence time of the three prediction models 

in East, North, and Up directions can basically be 

between 1.5h and 4h. In terms of positioning 

accuracy, the RMS values of positioning errors in 

East, North, and Up directions of the AttLSTM 

model based on NNOR and PARK stations are 

better than those of the LSTM and QP models, and 

the deviation degree of the error curve from 0 value 

after convergence is smaller. 

The positioning errors after the convergence of 

the static PPP of the selected 15 MGEX stations are 

counted, and the statistical results of the positioning 

accuracy of each station based on different clock 

bias prediction models in the East, North, and Up 

directions are shown in Figure 10. According to the 

comparison of three models in Figure 10, it can be 

said that AttLSTM model performs better than 

LSTM model and QP model in positioning in the 

East, North and Up directions among the 15 

selected stations. Additionally, due to the 

positioning results of different stations, the 

positioning errors of different stations in the Up 

direction fluctuate greatly, and the error is larger 

than that in the East and North directions. For 

further analysis of the positioning results, the errors 

of all stations in the East, North, and Up directions 

after convergence, as well as the averaged 2D RMS 

and 3D RMS values, are counted and the results are 

shown in Table 3. 

Table 2 Strategies for BDS-3 satellites PPP 

Items Correction model or estimation 

strategy Satellites BDS-3 satellites 

Observations Ionosphere-free code and 

Cutoff elevation 10° 

Satellite orbit and Fixed 

PCO/PCV Corrected with igs14.atx 

Relativistic effects Corrected 

Solid tide IERS 2010 

Ocean loading IERS 2010 

Pole tide IERS 2010 

Ionospheric delay Ionosphere-free 

Tropospheric delay 

Saastamoinen model for dry 

delay and estimation for wet 

component 
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Fig. 8 Static PPP positioning results of clock bias predicted by three models of NNOR station 

 

Fig. 9 Static PPP positioning results of clock bias predicted by three models of PARK station 
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Fig. 10 The RMS results of static PPP positioning errors based on three models in East, 

North and Up directions (top to bottom) 

Table 3 shows the averaged RMS values of the 

15 MGEX stations under AttLSTM, LSTM, and QP 

models. The averaged RMSs of AttLSTM model in 

the East, North and Up directions can reach 0.074m, 

0.019m and 0.154m, respectively, while the 

averaged 2D RMS reaches 0.077m, and the 

averaged 3D RMS reaches 0.172m. These results 

indicate that the averaged positioning accuracy 

under the AttLSTM model is higher than that of 

LSTM and QP models. Additionally, compared with 

LSTM and QP models; the averaged RMS in the 

East direction is improved by about 42.5% and 

44.4%, the averaged RMS in the North direction is 

improved by about 44.7% and 58.9%, and the 

averaged RMS in the Up direction is improved by 

about 21.7% and 21.8%, while the 2D RMS is 

improved by about 41.3% and 45.8%, and the 3D 

RMS is improved by about 27.4% and 29.1%. In 

general, the accuracy improvement of AttLSTM 

model in East and North directions is significantly 

better than that in Up direction. Between the LSTM 

and QP models, the positioning accuracy of LSTM 

model is better than that of QP model in the East 

and North directions, while both have comparable 

positioning accuracy in the Up direction. 

Considering both 2D and 3D RMSs, the positioning 

accuracy of LSTM model is better than QP model. 

Table 3 The averaged RMSs of positioning errors 

of fifteen stations for three prediction 

models 

prediction 

models 

RMS/m 

East North Up 2D 3D 

QP 0.134 0.046 0.197 0.142 0.243 

LSTM 0.129 0.034 0.196 0.132 0.237 

AttLSTM 0.074 0.019 0.154 0.077 0.172 

5. Conclusions 

In order to improve the prediction accuracy of 

satellite clock bias, an attention mechanism-based 

long short-term memory neural network (AttLSTM) 

model is applied to SCB prediction in this paper. 

Because adding an attention layer to the model, can 

make the model pay attention to the relative 

importance of each feature in the input data, and 

adaptively extract the influence weight of the 

historical clock bias data on the current time clock 

bias data to improve the prediction accuracy of the 
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model. Therefore, the clock bias prediction 

accuracy of AttLSTM, LSTM and QP models are 

compared and analyzed by using MGEX BDS-3 

satellite precision clock product. Moreover, the 

predicted clock bias using the three models is 

applied to static PPP positioning respectively. 

The experiment results show that the averaged 

prediction accuracy of the AttLSTM model for 12h 

and 24h can reach 1.41ns and 1.75ns, which are 

better than the LSTM and QP models. With the 

increase of the prediction time, the advantage of the 

AttLSTM model is more obvious. The prediction 

accuracy of the clock bias model is affected by the 

type of onboard atomic clock, too. Under the three 

models, the clock bias prediction accuracy of the 

BDS-3 satellite equipped with the hydrogen clock is 

slightly better than the rubidium clock. In the static 

PPP experiment of 15 MGEX stations, the averaged 

positioning accuracy of the AttLSTM model in East, 

North and Up directions can reach 0.074m, 0.019m 

and 0.154m respectively, which shows that the 

AttLSTM model also performs better than LSTM 

and QP models in static PPP. Compared with the 

LSTM model and QP model, it has a great 

improvement. 

AttLSTM is a neural network model based on 

deep learning framework, which is suitable for time 

series prediction. In BDS-3 satellite clock bias 

prediction, AttLSTM model shows its advantages, 

and has a positive impact on reducing positioning 

error, which provides a new possibility/opportunity 

for improving the navigation satellite clock bias 

prediction accuracy. It is also expected to be used in 

precise orbit determination or other GNSS 

prediction problems. Due to the characteristics of 

the neural network model, different network 

structures, sample dimensions and different 

hyper-parameters will have a certain impact on the 

prediction results. Therefore, in practical 

applications, the model should be adjusted and 

verified in combination with different scenarios. 
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