


is to offset or minimize the ionosphere-induced
disruptions to satellite signal propagation and
thereby optimize the quality of navigation and
positioning services. This objective necessitates a
deeper understanding of free electrons and plasma
motion, coupled with an extensive comprehension
of the overall natural phenomenon. A primary
hurdle lies in developing precise models to depict
the ionosphere’s behavior and predict its effects
on radio wave propagation. Conventional models,
founded on potentially invalid assumptions, often
lead to substantial errors in the forecasted impacts
[3]. In contrast, machine learning techniques like
deep neural networks [4] can decipher the underly-
ing relationships in the data without rigid assump-
tions [5], facilitating more accurate predictions.
This capacity has substantially boosted our ca-
pability to predict ionospheric conditions and de-
velop innovative mitigation strategies. Moreover,
the vast quantities of data harvested from multiple
sources, including terrestrial and extraterrestrial
sensors, have opened new avenues for data-driven
ionospheric research. This, in turn, can contribute
to remarkable improvements in the performance
and reliability of GNSS and BeiDou satellite nav-
igation systems.

Armed with the above technologies, we
have formulated effective methods to extract
ionospheric information and three distinctive
strategies to implement this information, namely,
VTEC map construction, ionospheric piercing
points information interpolation, and ionospheric
information forecasting. The interconnection
between them and subsequent services is
illustrated in Fig. 1. This article aims to
provide a succinct overview of the fundamental
principles, methodologies, and corresponding
outcomes associated with each approach.

In the ensuing sections of this paper, we will
provide a thorough exploration of each of the
above-mentioned approaches for ionospheric re-
search. We will focus on their unique attributes,
limitations, and future prospects.

Firstly, we will scrutinize the Total Electron
Content (TEC) information extraction method,
which employs GNSS signals to calculate the TEC
of the ionosphere.

Fig 1: Flow chat of services.

Secondly, we will shift our attention to the
construction of VTEC maps. This method lever-
ages a network of GNSS receivers to generate two-
dimensional illustrations of the VTEC distribution
in the ionosphere.

Next, we will delve into the differential Slant
Total Electron Content (STEC) dSTEC interpola-
tion method. This approach is utilized to estimate
the temporal and spatial variations of STEC.

Finally, we will investigate the current status
of ionospheric information forecasting, examining
the models and algorithms used, along with their
limitations and challenges.

In conclusion, this paper seeks to provide a
comprehensive overview of the key methodologies
employed in ionospheric research, spotlighting the
significance and potential applications of such
research across various scientific and technological
fields.

II Ionosphere extraction

Introduction

Two predominant methods are leveraged to
derive TEC information within the ionosphere:
traditional ionospheric sounding techniques
[6] and GNSS-based ionospheric sounding
techniques [7]. Traditional ionospheric sounding
methodologies encompass two types. The first
comprises ground-based radio sounding methods,
which include ionosondes, oblique ionosondes,
backscatter ionosondes, incoherent scatter radars,
and low ionosphere soundings. The second type,
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known as topside sounding, places a sounding
instrument on a low-Earth orbit satellite to glean
TEC information between the satellite’s altitude
and the peak of the ionosphere. Alternatively,
GNSS-based techniques for acquiring ionospheric
information rely on the ionospheric delay of
the GNSS signals. By utilizing the frequency
dependency of the ionospheric delay within
the positioning equations, one can estimate
the TEC information along the GNSS signals’
propagation path. This technique has gained
widespread acceptance due to its ability to
provide real-time, high-precision, and continual
ionospheric information. Additionally, the
GNSS-based method is highly cost-effective
and requires minimal infrastructure, positioning
it as a practical solution for both research
and operational applications. The extraction
of the STEC parameter using the GNSS-based
approach also furnishes information on ionospheric
irregularities, thereby aiding in the study of space
weather phenomena and the understanding of the
associated physical processes.

Collectively, the GNSS-based approach serves
as an invaluable instrument for ionospheric re-
search and its practical applications. For instance,
Ionospheric Pierce Point (IPP) interpolation [8]
is utilized to estimate ionospheric conditions at a
given location. By interpolating the STEC values
procured from proximate GNSS stations, one can
estimate the ionospheric conditions at any desired
location. This is particularly beneficial for GNSS
positioning, which relies on accurate ionospheric
corrections to mitigate the effects of ionospheric
delay on the GNSS signals. This topic will be
discussed in more detail in a subsequent section.

Principles and Methodologies

The GNSS basic observables can be categorized
into pseudorange and carrier phase observables.

P s
r,f = ρs

r + c(tr − ts) + T s
r + γfI

s
r +Dr,Pf
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Pf
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In this article, the pseudorange observables
are represented by P s

r,f , while the carrier phase
observables are represented by Φs

r,f , where the su-
perscripts s, r, and f denote the satellite, receiver,
and frequency band, respectively. ρs

r represents
the geometric distance between the satellite and
receiver, c represents the speed of light, tr and ts

represents the receiver and satellite clock errors,
T s

r represents the tropospheric delay, Is
r represents

the ionospheric delay, γf represents the frequency-
dependent ionospheric delay, Dr,Pf

represents the
hardware delay of the receiver of frequency f , Ds

Pf

represents the hardware delay of the satellite of
frequency f , Ds

Φf
represents the hardware delay of

the satellite. λf represents the wavelength of fre-
quency f, Nf represents the ambiguity of frequency
f , and εsr represents other known or unknown
errors. The original observation equations of the
pseudorange and carrier phase observables can be
expressed as follows [9]:

The fundamental observation equation of
GNSS can be utilized to formulate the non-
differential, non-combination PPP algorithm [9].
When this equation is applied to a reference
station with known geometric position and
high-accuracy hardware products, it can be
combined with precise ephemeris and precise
satellite clock products to considerably mitigate
the satellite orbit error caused by the model
clock and satellite clock bias. Additionally, other
related empirical models or products can be used
to correct system biases such as atmospheric
delay, antenna phase center offset at both satellite
and receiver ends, phase ambiguity, relativistic
effects, solid tide and ocean tide, and Earth
rotation. When amalgamated with appropriate
solution algorithms such as least squares and
Kalman filtering, the equation can yield the
STEC between the satellite and the base station
with relative high precision [10, 11, 12, 13].

III Nowcasting

Introduction

The ionosphere nowcasting method is primarily
used to study the behavior and characteristics
of the ionosphere, and to provide necessary in-
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formation for forecasting ionospheric conditions.
This information is crucial for monitoring the
impacts of space weather events on technology-
based systems, such as satellite communication
and navigation. Space weather events, including
solar flares and coronal mass ejections, can cause
changes in the ionosphere that can disrupt ra-
dio communications and navigation systems, such
as GPS. Furthermore, the ionosphere nowcasting
method is also employed to help understand the
impact of human activities, such as space weather
and climate change, on the ionosphere. Accu-
rate ionosphere nowcasting requires the use of
advanced data assimilation techniques, which can
effectively integrate observational data into mod-
els, and accurately capture the complex spatio-
temporal variations in ionospheric parameters.

Numerous research studies have been focused
on resolving the primary challenge and aiming
to achieve precise results, especially for high
ionospheric activities. The first category of
approaches includes methods that estimate and
represent ionospheric corrections as VTEC,
such as the Regional Ionospheric Map (RIM).
The Wide Area Augmentation System (WAAS)
employed the Kriging model to express spatial
correlation for regional ionosphere. Observation
deviations and information of code noise are
then used to adjust the semivariogram [14]
[15] . Huang et al. [16] extended the Kriging
method, taking into account the accuracy of
TEC observations. Liu et al. [17] proposed an
adjusted Spherical Harmonics Adding Kriging
(SHAKING) method to generate real-time RIMs.
The European Geostationary Navigation Overlay
Service (EGNOS) used a non-uniform partitioning
scheme for the ionospheric grid [18]. However,
these methods are affected by modeling and
mapping errors and may not be sufficient for high-
precision positioning services [19], particularly
during high ionospheric activity. The second
category of approaches includes methods that
estimate and represent ionospheric corrections
in the form of STEC and its differential values.
Wanninger [20] introduced a location-based linear
interpolation model (LIM) to model differential
ionospheres in the region, and this model is

equivalent to the 2-D low-order surface model
[21]. Cui et al. [22] used a distance-based LIM
to estimate the values for the user station, and
their approach to addressing the above-mentioned
difficulty involves selecting observations from the
Ionospheric Pierce Points (IPPs) based on certain
rules. Xiang et al. [23] divided the value of
differential STEC (dSTEC) into a deterministic
part and a stochastic part. They then used
inverse distance weighting (IDW) and stochastic
noise models, such as multipath and modeling
error, to estimate the dSTEC of users.

Principles and Methodologies

In this article, we introduce a commonly used
and accessible information source: the VTEC
map, along with its construction approach and
modeling methods. As mentioned previously, the
ionosphere is a high-altitude layer located between
60-1000 km above the Earth’s surface, with a cer-
tain thickness. In order to simplify the description
of the variations in Total Electron Content (TEC)
of the ionosphere, it is commonly assumed that all
free electrons in the ionosphere are concentrated
on a perfectly thin spherical shell at a height of
350-450 km, which is referred to as the Single
Layer Model (SLM) of the ionosphere.

Using the aforementioned GNSS observation
equation, the electron content on the signal prop-
agation path, i.e., STEC, can be calculated. To
obtain the vertical electron content, VTEC, see
Figure. 2 ,a projection transformation is required,
where F (z) represents the projection function of
the ionosphere, R is the location of the receiver,
and intersects with the thin layer at the piercing
point P’ along the line of sight to the satellite.
The free electrons along the OP’ direction are
concentrated at point P. The relationship between
the projection function and the STEC and VTEC
is given by [24]:

F (z) = (1− ( RE

RE + h
sin z)2)− 1

2 (3)

where, z is the zenith angle to satellite, h is the
height of ionosphere layer presumed, RE is the
average radius of Earth.

Once obtaining the VTEC map information,
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Fig 2: Diagram for VTEC mapping caculation

the model can be established to nowcast infor-
mation for unknown positions. A classical model
for ionospheric VTEC spatial information we will
introduce as one paradigm of modeling method,
which can be utilized for interpolation, named as
spherical harmonic function model. The spherical
harmonics are a set of orthogonal functions defined
on the surface of a sphere. They can be thought of
as the natural extension of the Fourier series to the
surface of a sphere. To model a complex function
as ionosphere VTEC information using spherical
harmonics [25], the function is first decomposed
into a linear combination of spherical harmonics.
This is done by projecting the function onto each
of the spherical harmonics and calculating the
coefficients of the expansion. Once the expansion
coefficients are obtained, the original function
can be reconstructed by summing the individual
spherical harmonics, weighted by their respective
coefficients.

V TEC(φ, λ) =
nmax∑
n=0

n∑
m=0

P̂nm(sinφ)(Anm cos(mλ)

+Bnm sin(mλ))

P̂nm(sinφ) = N(n,m)Pnm(sinφ)

N(n,m) =

√
(n−m)!(2n+ 1)(2− δ0m)

(n+m)!
(4)

where V TEC(φ, λ) represents VTEC of iono-
spheric piercing point at latitude φ and longitude
λ. nmax represents maximum degree of spherical
harmonic function. Pnm(sinφ) represents n degree
and m order Unnormalized associated Legendre
function. δ0m represents Kronecker theta func-
tion. Anm and Bnm are model variables to be

estimated. Once we obtain a spherical harmonic
function model from observational data, we can
simply obtain the VTEC value at a given latitude
and longitude coordinate by interpolation.

Another classical methodology for modeling
and interpolation for VTEC spatial information is
surface function fitting, which refers to the process
of fitting a continuous surface function to a set of
discrete data points. A particular example [26]
for surface function fitting on 2-dimensional sptial
space can be formalised as solving the following
mathematical programming:

arg min
f∈W 2,2

N∑
i=1

(si − f(pi))2 + λJ [f ]

J [f ] =
∫ ∫

R2

[(∂2f(x)
∂p2

1

)2
+ 2
( ∂2f(x)
∂p1∂p2

)2
+(∂2f(x)

∂p2
2

)2]
dp1 dp2

(5)
where f represents the model function under

consideration, whose form is implicitly determined
by the variations problem. The solution of the
above programming actually provide a function
that given any coordinates it generate correspond-
ing VTEC values.

Results Illustration

In this section, we present the nowcasting in-
formation constructed in our study. The Figure.
5 displays the VTEC map for the entire China
region, and subsequent Figure. 4 in the series
depict the VTEC information for specific regions.
As seen, the VTEC map generated through the
nowcasting technique has proven to be a highly
effective means of capturing ionospheric infor-
mation across a large region, even in practical
scenarios, where only a limited number of satellite
observations are available for calculating STEC
information, compared to vast territory. Further-
more, the ionospheric information modeling tech-
nique enables us to provide highly accurate STEC
corrections by delicately constructing region rep-
resentative functions that potentially characterize
the spatial correlation between known reference
stations. The resulting ionospheric maps, which
are illustrated in the Figure. 3, provide a vivid
depiction of the effectiveness of this approach.
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(a) Example 1

(b) Example 2

(c) Example 3

(d) Example 4

Fig 3: The four examples represent the results at four different time points. The left figures represent longitude

and latitude on the x and y axes respectively, with the third dimension representing STEC values. The right

figures are a top-down view of the left figures. Each of them represents a sptial-temporal IPP TECU modeled

values. Observed that the distribution of ionospheric values is complex and irregulary. Unit is meter.
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Fig 4: Nowcasting of a specific sptial region. The

horizontal and vertical axes in the figure represent

longitude and latitude respectively. The bar located

on the right side of the figure serves to illustrate the

extent of TEC. Unit is TecU.

IV Forecasting

Introduction

The prediction of the ionospheric state is a
complex problem that has been the subject of
extensive research in the field of space science and
technology. In this study, we have chosen to focus
specifically on the forecasting of vertical total
electron content (VTEC) maps, given that VTEC
is widely recognized as an effective indicator of the
ionosphere’s effects on satellite-based navigation
and communication systems.

There are a variety of methods that have been
proposed to tackle the prediction of ionospheric
conditions, which can broadly be divided into
two categories: physical methods and data-driven
methods. Physical methods, such as the SAMI2
and SAMI3 models [27], [28], rely on the rep-
resentation of plasma behavior along the earth’s
dipole field through the application of physics-
based equations. While these methods can provide
insightful predictions, they are often computation-
ally demanding and require a large and diverse
set of data inputs, which limits their practical
usefulness for real-time applications.

In contrast, data-driven methods take a more
empirical approach, relying on mathematical mod-
els that are trained on observational data. These

methods are more computationally efficient and
less data-intensive than physical methods, and
they can provide a useful characterization of the
ionosphere’s patterns, even in cases where detailed
physical data is not available. In recent years,
a number of data-driven methods have been de-
veloped that have demonstrated promising results
for both modeling and forecasting of ionospheric
conditions. For example, Liu et al. [29] introduced
a harmonic cap model to forecast regional VTEC,
based on dual-frequency observations from the
Global Positioning System (GPS). Wang et al.
[30] proposed an adaptive autoregressive model for
predicting global VTEC maps, while Erdogan et
al. [31] combined B-spline functions with Kalman
filtering to simulate the spatial and temporal
dynamics of the ionosphere on a global scale.
Additionally, Liu et al.[17] used neural networks
to predict spherical harmonic function parameters
for representing ionospheric information.

While these data-driven methods are capable of
capturing some of the important features of VTEC
data, they are nonetheless limited by the mathe-
matical functions used to model the data, which
may not fully capture the complex temporal and
spatial dynamics of VTEC. Nevertheless, these
methods represent important advances in the field
of ionospheric prediction, and will continue to play
a critical role in the ongoing development of GNSS
services and applications.

NanLiao2022

Principls and Methodologies

In general, a comprehensive and mighty fore-
casting model should be capable of predicting
ionospheric information for any given spatial co-
ordinate and any moment that is not too distant
from the present. This requires the model to ef-
fectively characterize the spatial-temporal features
in a unified manner. Such a model should exceed
the capabilities of models that estimate temporal
and spatial features separately and then combine
them.

However, in this article, we focus on a type of
less holistic models that only forecast ionospheric
information (VTEC, for example) at given grids.
A general framework for such kind of forecasting
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(a) Low activity period (b) Middle activity period

(c) High activity period (d) Severe activity period

Fig 5: China VTEC maps. The horizontal and vertical axes in the figure represent longitude and latitude

respectively. The bar located on the right side of the figure serves to illustrate the extent of TEC. Unit is TecU.

(a) Forecasting result 1 (b) Forecasting result 2

Fig 6: Two figures represent the different time period. The red line and the blue line represent the predicted

and true Vtec values. Forecasting VTEC at given grid for the next three hours.The vertical axis in the image

represents Vtec values, with a unit is TecU, and the horizontal axis represents the duration of a certain time

period starting from a specific moment, with a unit of 5 minutes. Observed that the fluctuations are quite

severe.
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model can be formally stated as follows:

Given M × N grid points, each assigned with
a value that represents the VTEC at that point,
obtained through the mapping of STEC to the
zenith direction as described previously, the value
of VTEC at each point varies over time. The
observations of the grid at any given time t can
be represented by a matrix Xt ∈ RM×N . If
periodic observations are recorded, a sequence of
matrices X1,X2, ...,Xt can be obtained. With J
historical observations, the current observation,
and a defined time period K at hand, the central
objective lies in forecasting the optimal sequence
of matrices for the forthcoming instances. [32]:

X t+1,X t+2, · · · ,X t+K = arg max
Xt+1,Xt+2,··· ,Xt+K

p(Xt+1,Xt+2, · · · ,Xt+K |Xt−J+1,Xt−J+2, · · · ,Xt)
(6)

A intuitive idea for constructing forecasting
model in this setting is to design a tansfer function
that convolves the information from a given point
and the points around it, and maps it to the
information at the same point in the next moment.
With the aid of machine learning techniques, we
can train the model to optimize the function
parameters and minimize predetermined perfor-
mance metrics.

As previously mentioned, there are at least
two ways to model such a transfer function: by
deriving it from physical insights, such as physical
equation modeling, or by utilizing a data-driven
approach, such as neural networks. A commonly
employed data-driven method for ionospheric in-
formation forecasting involves a set of procedures.
Firstly, a parameterized spatial regression func-
tion is employed to establish the spatial model for
each moment. Secondly, a time series forecasting
method is applied to provide the next set of pa-
rameters. Thirdly, these forecasted parameters are
integrated into the spatial model to generate the
final results. It is worth noting that this method
requires a substantial amount of data to accurately
establish the spatial and temporal relationships
between the various parameters. Moreover, the
accuracy of the final results heavily depends on
the quality and quantity of the input data.

Results Illustration

In this section, we present the forecasting re-
sults of VTEC values for two selected grids over a
three-hour time period. As observed in Figure. 6,
the fluctuations during the testing period are quite
severe, and a robust forecaster should be able to
accurately track these variations.

V Conclusion

In conclusion, this article has provided a com-
prehensive overview of the knowledge, methods
and results related to the ionosphere, including
ionosphere information extraction, VTEC map
generation, ionospheric modeling and interpola-
tion, and ionospheric information prediction. The
ionosphere is a crucial layer in the Earth’s atmo-
sphere, which plays a significant role in a range of
fields such as aviation, space technology, natural
resources and environment, hydrology, soil, geol-
ogy, geographic information systems, remote sens-
ing, meteorology, and Earth sciences. In particu-
lar, the study of the ionosphere’s dynamic changes
and accurate prediction of its future variations
are essential for ensuring the smooth operation
of wireless communication systems, improving the
accuracy of satellite navigation systems, and pro-
moting the theoretical and practical applications
of ionospheric physics in the field of Earth sciences.
The methods and results presented in this article
can serve as a valuable resource for researchers and
practitioners in the field of ionospheric research,
enabling them to effectively extract and analyze
ionospheric information, generate accurate VTEC
maps, model and interpolate ionospheric data, and
predict the dynamic changes of the ionosphere
in real-time. Overall, this article highlights the
importance of ionospheric research and its im-
pact on a range of scientific and technological
applications, emphasizing the need for further
research and development in this field to address
the challenges and opportunities posed by the
dynamic and complex nature of the ionosphere.
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