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Abstract: This manuscript is focused on
standardizing the process of the a posteriori precision
evaluation in discrete Kalman filtering. Although the a
posteriori precision evaluation of the solution was
considered as indispensable within the method of least
squares, the solution of a Kalman filter shows a lack of
a posteriori precision evaluation for too long. Even
worse, there often exists appalling confusion about
what is considered as the a posteriori precision of the
solution in Kalman filtering. The authors hereto
propose to put the a posteriori precision evaluation of
the solution into practice at four different levels in
Discrete Kalman filtering through estimating: (i) the a
posteriori variance of unit weight (or reference
variance), (ii) the separate a posteriori variance factors
for the process and measurement noise Vectors,
respectively, (iii) the individual a posteriori variance
factors for the independent noise groups, and (iv) the
individual a posteriori variance factors (or components)
for the independent process noise factors and
measurement types. A working example is presented to
illustrate the proposed a posteriori precision evaluation
in Kalman filtering using a road test based on the
double-differenced GPS L1 C/A, L1 and L2 carrier
phases and the specific force and angular rate
measurements from an MEMS IMU. With the rapidly
increasing utilization of the Kalman filter in modern
applications, the inclusion of the proposed a posteriori
solution precision evaluation, as part of the standard
solution, in discrete Kalman filtering is not only
necessary, but also can be expected to happen soon
within our grasp.
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Kalman filtering, variance factor (variance of unit
weight), residuals, redundancy contribution, variance
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1. Introduction

“Data fusion describes different methods and
techniques for combining data, information, and
knowledge in order to improve data quality, reduce
uncertainty, extract essential features and provide
statistics and analytics, ...” [ScienceDirect, 2025].
Undoubtedly, estimation methods and data (inclusive
of information and knowledge) are the linchpins in data
fusion. “Estimation, which fits in between the problems
of measurement and validation, deals with the
determination of those physical quantities that cannot
be measured from those that can be measured” [Mendel,
1999]. Data are a series of observations, measurements,
or facts [collinsdictionary.com]. A typical application is
a multi-sensor integrated kinematic positioning and
navigation system, the essential component of many
applications such as autonomous car driving,
unmanned aerial vehicles, and direct georeferencing
technology for automatic geospatial data acquisition at
large. Among different estimation techniques, the
Kalman filter definitely belongs to the most significant
for estimating the state of a dynamic system from noisy
measurements toward achieving optimal solution. The
general consensus is that measurements are decisive, no
matter with which optimal estimation techniques, for
example, least squares method, minimum variance, or
others.

In Kalman filtering, one seeks for the best possible
estimate of the state vector of a system through
combining its system model (for prediction) with
measurements on the ground of the principle of
minimum variance. With both of the system and
measurement models, the a priori stochastic model for
them must be presumed before conducting the
estimation, which describes the inherent randomness or
uncertainty in both the being observed system and the
being acquired measurements, specifically associated
with the initial state vector and process noises of the



system and the measurement noises. Such stochastic
model is paramount of importance in Kalman filtering.

It is well known that the a posteriori precision and
accuracy evaluation has been an inalienable part of
least squares method [Wright and Hayford, 1906;
Helmert, 1907; WCSM, 1959; Wells and Krakiwsky,
1971; Cross, 1983; Koch, 1987; Caspary 1988; Cui et
al, 1993; Taylor, 1997; Rao and Toutenberg, 1999;
Ghilani and Wolf, 2006; Kariya and Kurata, 2004;
Wang et al, 2019]. But this topic barely appears as a
standard part of the solution in Kalman filtering
[Anderson, 1979; Brown and Huang, 2012; Chui and
Chen, 2009; Eubank, 2009; Gelb, 1974, Grewal and
Andrews, 2008; Salzmann, 1988; Simon, 2006;
Teunissen et al, 2021; Zarchan, 2005; etc.]. There even
often exists some confusion elementarily about what
represents the a posteriori precision of the estimated
state vector in Kalman filtering. The variance-
covariance propagation for the optimally estimated
state vector from time to time is commonly called the a
posteriori precision (or accuracy), which is, however,
dominantly dependent on the a priori stochastic model
and has nothing to do with the actual behavior of
system process and measurement noises associated
with the being processed data. This deficiency in the
solution formulation of a Kalman filter is
incomprehensible either theoretically or practically.
Fortunately, quite a few antecessors did touch on this
problem to a certain extend [Pelzer, 1987; Koch, 1990;
Tao, 1992; etc.]. The a posteriori variance of unit
weight was introduced to geodetic deformation analysis
wherever geodesists utilized the discrete Kalman filter
for processing their multi-epoch repeated observations
[Pelzer, 1987; Tao, 1992]. Yu et al (1988) proposed an
approach to incorporate variance component estimation
in the filtering process in monitoring networks.
Furthermore, Koch [1990] clearly stated the problem
where the covariance matrix Q(k) of the process noise
vector and the covariance matrix R(K) of the
measurement vector could have their unknown variance
factors in Kalman filtering.

Nowadays, more and more applications come out
for conducting data fusion by applying the Kalman
filter. Their accuracy requirements could be as high as
a few cm in kinematic positioning, for example, in the
modemn direct georeferencing technology specifically.
There is an urgent need to add the appropriate a
posteriori precision assessment to its solution
formulation. The overall objective of this manuscript
aims how one may posteriorly improve the a priori
stochastic  model in  terms of  solution
precision/accuracy evaluation with considering the
implication of residuals of the predicted state vector,
process and measurement noise vectors in Discrete
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Kalman filtering. Accordingly, this manuscript would
systematically structure how to perform the a posteriori
precision and accuracy assessment so that one can
standardize its analytical formulation and also practical
execution as an inalienable part of a Kalman filter.

This introduction is followed by Section 2 that
summarizes the standard Kalman filter inclusive of
system and measurement models along with the general
assumption of stochastic model of process and
measurement noise vectors, the core of the solution and
its essential accompaniments to prepare for the
theoretical basis. Section 3 moves on the main
objective of this manuscript: a posteriori precision
evaluation in discrete Kalman filtering. Then, a
working example is presented from a real test data
acquired by using a land-based GPS/IMU integrated
kinematic positioning system in Section 4. At the end,
Section 5 concludes the manuscript.

2. Standard Kalman Filter

2.1 System and Measurement Models

This section straightforward configures the
formulation of a Kalman filter in discrete time that is
referred to as the standard form through this manuscript.

Assume to have a linear state-space system with its
discrete observation made over a time period of

(t,,t,-. b ..., Ty ), where each time instant implies an
observation epoch. For simplification without loss of
generality, the deterministic system input will be left
out and the time instant t, will also be substituted by k.

In general, at an observation epoch k, one has the
system model

x(k) = A(k,k =) x(k =1) + B(k, k —=1)w(k) (2.1)

wherein x(k), x(k —1),w(k) are the state vector at k,
the state vector at k - 1, and the process noise vector,
respectively while A(k,k —1) and B(k,k—-1) are the
system state and process noise transition matrices from
observation epoch k — 1 to epoch k, respectively. For
the purpose of predigesting the further analytic
expressions, A(k,k—-1) and B(k,k—1) are simplified
to A(k) and B(k) wherever no confusion might be led
to. In addition, the initial state vector is given as x(0)
with its covariance matrix of D, (0).

The accompanying measurement model at the same
observation epoch is given as

2(k) = C(K)x(k) + 4(k) (2.2)

wherein z(k),C(k), 4(k) are the measurement vector,
the observable design matrix and the measurement



noise vector, respectively at k, respectively.

In an encouraging alternate way, Wang [1997]
radically expressed (2.1) in two independent groups of
pseudo-measurement vectors as follows:

1 (k) = Ak, k =1)x(k 1) = x(k / k —1)
D,... (k) = A,k =1)D,, (k —) A" (k,k —1)

L(K)=w(k) D, (k)=Q(k) (2.4)
wherein | (k), I,(k) are the two pseudo measurement

vectors from the purely predicted state vector and the
process noise vector associated with their covariance
matrices D,, (k) and D, (k) , respectively. By

combining (2.2), (2.3) and (2.4) together with the
stochastic model as in Section 2.2, the identical results
were derived as in Section 2.3.1 and further delivered
unique additional quantities for conducting a
comprehensive error analysis in discrete Kalman
filtering [Wang, 1997].

(2.3)

2.2 Stochastic Models

Three basic assumptions about the process and
measurement noises are practically made in general.

First, the process noise vector satisfies

w(k) ~ N(o0, Q(k)) (2.5)
wherein u~N(e,V) reads that u (a variable or a
vector) “conform” to the normal distribution with an
expectation of € and covariance matrix of V. (2.5)
means that the process noise vector w(k) conforms to
the normal distribution with its expectation of 0 (zero
vector) and variance matrix of Q(k), in other words,
w(k) is characterized as white noise with its variance

matrix of Q(k)

Second, the measurement noise vector A(k) is
attributed to

A(k) ~ N(o, R(k)) (2.6)
i.e., a normal distribution with its expectation of O
(zero vector) and variance matrix of R(k).

Third, the process anq measurement noises between
two epochs i andj (1 # ]) are commonly characterized
as independent to each other, that is,

Cov(w(i),w(j)) =0 2.7)
Cov(A(i), 4(j)) =O (2.8)
Cov(w(i), 4(j)) =0 (2.9)

and, furthermore, w(k) and 4(k) are also uncorrelated
to the initial state vector:

Cov(w(i),x(0))=0 (2.10)
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Cov(A(i), x(0)) =0 (2.11)

Al the equations from (2.5) to (2.11) express the a-
priori stochastic model and belong to a vitally
necessary part of the standard formulation in discrete
Kalman filtering.

2.3 The Solution

The epochwise solution for the state vector from the
system and measurement models (Section 2.1) is
commonly derived after the Principle of Minimum
Variance [Gelb, 1974; etc.]. Under the assumption of
normal distributions as in (2.5) and (2.6) plus (2.7) —
(2.8), the solution after the Principle of Minimum
Variance is undoubtedly identical to the solution after
the Principle of Least-Squares [Wang, 1997; Wang et
al, 2023].

2.3.1 The core of the solution

As the solution derivation is so well known, the core of
the solution is directly summarized in Table 2.1 [Wang,
2009].

Table 2.1 The core of the solution in Kalman
filtering

The time update (or the one step prediction)

X(k/k —=1) = A(k)X(k —1)

D, (k/k—-1)=A(k)D, (k—1)AT (k)
+B(k)Q(k)B' (k)

(2.12)

(2.13)

The measurement update (or the optimal estimate)
X(k) = X(k/k —=1) + G(k)d(k) (2.14)
D, (k) =G(k)R(K)G' (k) +

[E-G(K)C(K)ID,, (k/k=1)[E - G(k)C(K)I'
Note: E is the identity matrix.

(2.15)

The system innovation and gain matrix:

d(k) = z(k) = C(K)R(k /K —1) (2.16)
D, (k) = C(k)D,, (k/k —1)C" (k) + R(K) (2.17)
G(k) =C(k)D,, (k/k —=1)C" (k) D (k) (2.18)

2.3.2 The essential accompaniments

In order to successfully deliver the solution as in
Table 2.1, a number of the concomitant analytic
analyses are run in parallel with the recursive time and
measurement updates in Kalman filtering, which may
include model optimization, statistic characterization of
the process noises and measurement noises, and
adaptive and/or robust measures. For example, the




characterization of the innovation series normally
belongs to the key processes in Kalman filtering, so
does the system fault detection. In line with the similar
purpose, one demands for estimating and analyzing
plenty of additional essential auxiliary quantities as
necessary part of the data fusion process in Kalman
filtering.

To avoid waste time on triviality, let come straight
to the main theme. The objective is here laid on the
comprehensive error analysis in discrete Kalman
filtering [Wang, 1997, 2008, 2009; Wang et al, 2021].
By considering the three groups of the epochwise
available uncorrelated stochastic information: (1) the
process noise vector; (2) the purely predicted state
vector (exclusive of the process noises) and (3) the
measurement vector, Wang [1997] successfully
introduced an alternate derivation that not only reached
the identical solution as the one in Section 2.3.1 and
also delivered certain essential accompaniments to the
core solution, which are summarized below [Wang,
1997, 2008, 2009]:

1). Theresiduals of the process noise vector w(k)
v, (k) =Q(k)B" (k) D (k/k —1)G(k)d (k) (2.19)
D,,, (k) =Q(k)B" (k)C™ (k) D4 (k)C(k)B(k)Q(k)

(2.20)

2). Theresiduals of the measurement vector z(k)
v, (k) =[C(K)G(k) - E]d(k) (2.21)
D, (k) =[E ~C(K)G(K)IR(k) (2.22)

3). The residuals of the predicted state vector | (k)
v, (K)=D,, (k)D;(k/k-1)G(Kk)d(K) (2.23)
D, ., (k)=Dy, (K)IC(K)Dz(k)C(K)D, , (k) (2:24)

wherein
I (k)=Ak)x(k—-1/k -1) (2.25)
D, ;. (k) = Ak)D, (k—1)A" (k) (2.26)

4). The redundancy index of w(k)

r, (k) =trace{Q(k) BT (k)C" (k) D3 (k)C(k)B(k)}
(2.27)

which is the total redundancy contribution of the
process noise vector. When Q(k) is diagonal, the

individual redundancy index is given as

r,, (k) ={Q(k)B" (k)C" (k) Dy (k)C (k) B(k)}; (2.28)
5). The redundancy index of z(k)

r,(k) =trace{E — C(k)G(k)} (2.29)

which is the total redundancy contribution of the
measurement vector. When R(k) is diagonal, the

individual redundancy index is given as

r, (k) =1-{C(K)G(K)}, (2.30)
6). The redundancy index of | (k)
n =trace{D, , (k)CT(k)Dz(k)C(k)} (2.31)

which is the total redundancy contribution of the
predicted state vector. As the components in the
predicted state vector | (k) are correlated to each

other in general, their individual redundancy
indexes are ordinarily not interpretable and
therefore not adopted in practice.

7). The total redundancy of w(k), z(k) and I (k)
r(k) =r,(K)+r,(k)+n (k)= p(k) (2.32)

wherein p(k) is the dimension of z(k) , i.e., the

total system redundancy is equal to the number of
the measurements in Kalman filtering.

Wang, et al [2009] described three unique
fundamental and practical usages of this redundancy
contribution in Discrete Kalman filtering: (i) the
degrees of freedom of test statistics [Wang, 1997,
2008], (i) the simplified algorithm of variance
component estimation [Wang. 1997, 2008; Caspary and
Wang, 1998; Wang et al, 2009], and (iii) the a
posteriori variance components based robust Kalman
filter [Wang et al, 2010].

By the way, the authors kindly admit that the
equations (2.21) and (2.22) became available from the
very beginning as they could easily be deduced
together with the core solution in Section 2.3.1. They
are listed here just for completeness with all the
residuals due to their necessity for the a posteriori
precision or accuracy assessment in Section 3 of this
manuscript. However, all the rest equations first
appeared in [Wang, 1997]. Due to the traditional
habitude, almost all the basic statistical analysis in
Kalman filtering has been focused on the system
innovation series, indeed [Mehra, 1970; Teunissen et al,
2021; etc.]. Statistical analysis of the process noise
residuals (refer to (2.19) and (2.20)) has been scarce so
far due to the lack of such analytic expression directly
from the solution derivation after the Principle of
Minimum Variance. All the equations from (2.19) to
(2.32) as a whole provided for the fundamental of not
only the comprehensive error analysis and also
reliability theory in Discrete Kalman filtering [Wang,
1997, 2008, 2009 etc.], which were further extended to
Kalman filter with constraints [Wang and Brunson,
2023].



3. A Posteriori Precision Evaluation in
Discrete Kalman Filtering

This section first review how the precision of the
estimated parameters has been posteriorly evaluated in
the Method of Least Squares or more often called the
Least Squares Adjustment in Geodesy and Surveying
Engineering, and then proposes the similar framework
with which the a posteriori precision can practically be
undertaken in Discrete Kalman filtering. To avoid any
confusion between precision and accuracy of an
estimate after a specific optimal principle, the word,
precision, is preferred here. As a matter of fact, it is
well known that the precision and accuracy will merge
in terms of the estimated states or parameters on the
ground of the Method of Least Squares and the
Principle of Minimum Variance as long as their
unbiasedness holds and it is unnecessary to pursue their
distinction here in this manuscript.

3.1 The State-of-Art A Posteriori Precision
Evaluation in the Method of Least Squares

It is so matured how scientists and engineers
posteriorly evaluate the precision of the least squares
solutions. Helmert [1907] distinctly dwelt upon the
topic of the a posteriori precision and accuracy
evaluation repeatedly in his magnum opus of historic
significance of “Die Ausgleichungsrechnung nach der
Methode der Kleinsten Quadrte” (The Least Squares
Adjustment), for example, (i) Section VI
Schlupkontrolle (Final Control) in 87 under Chapter 3,
(i) Section Il Mittlerer Fehler (standard error) in 82
under Chapter 4, and (iii) Section Il Der mittlere
Fehler der Gewichtseinheit (standard error of unit
weight) in 82 under Chapter 4. A subsection of the a
posteriori precision evaluation can also be found in
Chapter 1V Adjustment of Indirect Observations in
[Wright and Hayford, 1906]. Obviously, the a
posteriori precision evaluation of the estimated
parameters has been not only based on the a priori
stochastic models (especially the measurement
weighting scheme), the geometry of the linear or
linearized models, and also posteriorly grounded on the
measurement residuals and the redundancy contribution
in a linear or linearized system. Such a posteriori
precision evaluation has consistently been one of the
standard components in the method of least squares and
can be found in all the widely used higher education
textbooks [WCSM, 1959; Wells and Krakiwsky, 1971;
Cross, 1983; Koch, 1987; Caspary 1988; Taylor, 1997;
Rao and Toutenberg, 1999; Ghilani and Wolf, 2006;
Kariya and Kurata, 2004; Wanget al, 2019; etc.].

In summary, the a posteriori precision evaluation of
the estimated parameters has been standardized as an
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essential component in the method of least squares (or
least squares adjustment) for a very long time (more
than a century).

3.2 A Posteriori Precision Evaluation in Discrete
Kalman filtering

3.2.1 Introduction

In Kalman filtering, the equation (2.15) has
generally been regarded as the a posteriori covariance
matrix of the optimally estimated state vector, for
example, stated on page 173 in Farrell [2008]. One
could not resist asking what impacts this so-called a
posteriori covariance matrix here, indeed. In other
words, what decides D_(k) in (2.15)? It does involve

the system and measurement models given in (2.1) and
(2.2) and also the a priori stochastic model from (2.5)
to (2.11). But how about the a posteriori random errors
presented by the residuals of the process and
measurement noise vectors? Their impacts have never
been integrated into (2.15) yet if readers seriously
review those popular textbooks of the Kalman filter and
the overwhelming relevant literature [Gelb, 1974;
Anderson and Moore, 1979; Salzmann, 1988; Zarchan,
2005; Simon, 2006; Grewal and Andrews, 2008; Chui
and Chen, 2009; Eubank, 2009; Brown and Hwang,
2012; Teunissen et al, 2021; etc.]. In contrast to the a
posteriori precision evaluation in the method of least
squares, the existence of this deficiency in Kalman
filtering is indeed hard to believe as there have been
plenty of the research activities to undertake a lot more
complicated issues, instead of undertaking this
fundamental aspect to enhance the core solution in
Kalman filtering. However, we have to genuinely
confess to this reality.

Fortunately and very encouragingly, a few of our
antecessors in the field of Geodesy did initiate this very
specific aspect [Pelzer, 1987; Yu et al, 1988; Tao, 1992;
Koch, 1990]. Especially, a description of ‘“Variance
Factor Unknown” for the covariance matrix Q(k) of the
process noise vector and the covariance matrix R(k) of
the measurement vector was given in Section 318
Linear Dynamic Systems, Chapter 3 Models and
Special Applications in the well-known book, Bayesian
Inference with Geodetic Applications [Koch, 1990]. A
relatively systematic studies of it have further been
conducted comprehensively in [Wang, 1997, 2008,
2009; Wang, et al, 2009, 2010, 2021, 2023; Qian, et al,
2016; Qian, 2017].

Accordingly, this section enters upon proposing a
practically feasible structure with its focus on the a
posteriori estimation of variances at different level for
achieving the a posteriori precision in discrete Kalman
filtering.



3.2.2 Variance of Unit Weight or the residuals (refer to (2.19) — (2.24). On the other
hand, it can be estimated epochwise (locally), over a
specific time interval (regionally) or across the whole
dataset (globally).

The local variance of unit weight at an arbitrary
instant t, is estimated by using the system innovation

The variance of unit weight (also commonly called
the variance factor or the reference variance denoted as

ag usually) characterizes the estimated variance of a

hypothetical observation with unit weight when dealing
with (real and pseudo) measurements of unequal .
accuracy [Helmert, 1907; Ghilani and Wolf, 2006; etc.]. vector in (2.16) and (2.17) [Pelzer, 1987; Tao, 1992]
It is one of the most essential quantities in statistical 52 (10 d" (k)Dy; (k)d (k) (3.1)
quality evaluation and hypothesis testing. On one hand, Gio(k) = (k) '

one can posteriorly estimate the variance factor by .
using the system innovations (refer to (2.16) and (2.17)) or the residuals from (2.19) to (2.24) [Wang, 1997]

vi (k) D, (K)vy, (k) + vy, (K)QT(K)v,, (K) +v; (K)RT (k)v, (K)

52 () = Il 3.2
Gio(K) o(k) 3.2)
wherein the subscript | stands for local or epochwise example, t it (J>0) (with using j epochs
and the subscript 0 stands for the reference variance ; .
(same below). The equivalence between (3.1) and (3.2) together) in ankalog to(3.1)and (3'k2)'
was proofed by Wang [1997]. 8%(k)=Yd"()DaGydG) Y pei) 3.3)
The regional variance of unit weight at an arbitrary k-4l i=k—j+1

instant t, can be estimated over a time window, for

2 v ()Dg (D)v,, (1) +v,, Q7 (v, (i) +v; (DR (v, (D)}

&% (k) = == k (34)
>.p(i)
i=k—j+1
by using the system innovation and residual series over between different epochs under the given stochastic
the specified time window, respectively. The subscript models in Section 2.2 [Tao, 1992; Wang, 1997].
rin (3.3) and (3.4) stands for regional. (3.3) and (3.4) The global variance of unit weight can be further
are equivalent and deliver a more stable average value estimated across the whole data over (t,,....t,,...t, ):
than (3.1) and (3.2) as the epochwise estimated ) ) e
variance factors may wander around from time to time. 52 N 4T YDA () d (i) / : 35
The validity of (3.3) and (3.4) hold due to the fact that 0 le (1D (Nd (1) ;p(') 39

the system innovation and residuals are independent

DAV (D5 (v, () +vy, (DQ™ (1)v,, (1) +v; (DR (i)v, (i)}

Gl =" . (3.6)
2. p()
i=1
wherein the subscript g in (3.5) and (3.6) stands for which represents the a posteriori covariance matrix of
global. As long as the a priori stochastic models, i.e., %(k) with having the influence of the used data via &7 .

the ~ covariance ~matrices, _ R(D),R(2),--.,R(k) _ and Unfortunately, the lack of this a posteriori measure has
Q(1),Q(2)...,Q(k) along with D, (0) stochastically been widespread indeed.

well characterize the system as defined in Section 2.1, The estimate after (3.5) and (3.6) is preferred in post
the estimated a posteriori variance factors should processing because it provides an overall evaluation in
sufficiently close to the Unity. Otherwise, one may terms of the variance factor as a scale in its magnitude
consider posteriorly scale D, (k) using an estimated to reflect the average noise level of the entire system

solution so that one may scale the given a priori
covariance matrices and then iterate the data fusion
B, (k) =62D, (k) (3.7) until its estimate statistically converges to the unity.
The estimate after (3.1) and (3.2) can be utilized to

variance factor, &7, as follows:
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effectively conduct system diagonals for any fault
related to the system model and/or the measurement
model. One may use the estimate after (3.3) and (3.4)
to identify any data gaps in measurements, any over
parameterization, or modeling deficiency. In brief, how
one appropriately utilizes them is closely related to the
applications and analysts’ understanding of the being
processed data.

3.2.3 Separate Variance Factors for Q and R

What about if the a priori covariance matrix Q(k) of
the process noise vector w(k) does not share the same

variance factor with the a priori covariance matrix
R(k) of the measurement vector z(k) ? In connection

with the given question, this section seeks for a
practically feasible solution.

In Kalman filtering, the process noise vector and the
measurement noise vector could straightforwardly be
simply treated as two uncorrelated types of the
observation (or pseudo observations) so that they are
associated with their own stochastic models. Besides
Section 3.2.1, one can further estimate the variance
factors for Q and R simultaneously. The variance

component estimation (VCE) method after Helmert in
the method of least squares [Welsch, 1978; Forstner,
1979; Koch, 1987; Cui et al, 1993; etc.], for example,
can be deployed for such purpose. For practical
purpose, Foérstner [1979] proposed a simplified
algorithm directly based on the measurement residuals
and their redundancy contribution, which has been
popularized in aerial photogrammetry where the
number of the redundant measurements is large. By
taking the advantage of high accumulative redundancy
in Kalman filtering, Wang [1997] successfully realized
Forstner’s simplified algorithm, by which the given
question at the start can be resolved. In analog to (3.2),
(3.4) and (3.6), from (2.19) - (2.22) and (2.27) and
(2.29), the local, regional and global variance factors
are posteriorly estimated for Q (with the subscript of Q)

A T(K)Q™(k k
B (k) = Yul )Qrw ((k))vw( ) @tt,) (3.8)

ViR, ()
&rOQ(k) = ol k
2.5 ()

i=k—j+1

2V Q7 (i)v,, (1)
&gOQ(k) == N

(1)

i=1

and for R ( with the subscript of R)

(over [tk—j+11tk]) (3.9

(across [t;, ty]) (3.10)
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v; (KR (K)v, (k)
r,(k)

2V, (R (v, (i)
Gror(K) = = K
2.5 ()

i=k—j+1
N
2V, (R (i), (i)
A2 =l
N
2.r()
i=1
Thus, one can choose specific estimates of these

O4or =
two variance factors to scale the a priori process and
measurement noise matrices as follows:

@att,) (3.11)

6-I0R(k) =

(over [tk—j+1'tk]) (3.12

(across [t ty]) (3.13)

Q(k) = 65,Q(k) (3.14)
R(k) = 62,R(k) (3.15)

which are called the a posteriori covariance matrices of
the process and measurement noise vectors,
respectively.

3.2.4 Individual Variance Factors for the
uncorrelated groups of process noise factors
and measurements

There exist plenty of applications that may need to
posteriorly estimate the variance factors of different
types of measurements or independent measurement
groups. A typical example is the relative GNSS
kinematic positioning of a moving rover with respect to
a stationary receiver at a base station. Specifically
consider using GPS receivers with three independent
measurement types: L1 C/A, L1 carrier phases and L2
carrier phases. So, one may need to estimate three
variance factors corresponding to the double-
differenced (DD) L1 C/A, L1 carrier phases and L2
carrier phases. Due to the double differencing process,
the DD measurements are correlated within each type
[Gopaul et al, 2010; Wang et al 2010]. With the
progress of the GPS modernization program, there
could be six uncorrelated types of GPS measurements
with the range and phase measurements from L1, L2
and L5. Another example is that an IMU could acquire
a 3 dimensional specific force vector and a 3
dimensional angular rate vector so that two variance
factors may be introduced in their variance component
estimation for each, respectively [Wang et al, 2021],
even more variance factors for an IMU array [Brunson
et al, 2024].

Without loss of generality, one no more needs to
distinguish between the process noise vector and
measurement noise vector in this subsection. Instead,
the variance component (or factor) estimation is



focused on the grouped measurements no matter there
exists or does not exist any correlation within a group,
but no correlation exists between measurement groups.

Let v (k) ~ N(o, D, (k))at instant t,, where v (k)

is the residual vector of the s-th group (the partial tone
from set) of the measurement vector with its a priori
covariance matrix D (k). Similar to (2.27), (2.29) and

(2.31), its r(k) stand for the subtotal redundancy

contribution of the s-th group of the measurements.
Correspondingly, the variance factor for the s-th group
is estimated as follows:

6_|20/S(k) _ V;r (k) Ds_sl(k)Vs(k) (at tk ) (316)
r,(k)
3 VI (1) D (v, (i)
62, (k) = =it (over [t,_,,.t,1) (317)
)
Gors = z;v (B O (across [t;,t,]) (3.18)

er(i)

It must be pointed out that the degrees of freedom
are the total redundancy contribution of all the
measurements, instead of simply the number of the
measurements in the s-th group, which is generally
smaller than the latter. Clearly, such variance factors
cannot be estimated directly through using the system
innovation series.

In general, the a posteriori estimate of the a priori
covariance matrix D (k) is given as follows:

D, (k) =62,,D, (k) (3.19)

for the s-th group of the measurements inclusive of the
specific groups of w(k) in (2.1)and/or z(k) in (2.2),
wherein &2, is a chosen variance factor among (3.16)
—(3.18).

3.2.5 Individual Variance Factors or Components
for the uncorrelated process noise factors and
measurements

In comparison with the scenario as described in
Section 3.2.4, one can further estimate the variance
components for each of the uncorrelated process noise
factors and/or uncorrelated measurement types, which
can be completed either through estimating their
variance factors or variance components at a level
further in detail.

Commonly, the individual components in a process
noise vector are assumed to be a priori independent of

each other, i.e., the covariance matrix Q(k)in (2.5) is

diagonal in practice unless otherwise stated. Quite the
same with the measurements from different sensors in a
multi-sensor Kinematic positioning and navigation
system, the different measurements at a time are
presumed to be uncorrelated to each other, for example,
the measurements from the three gyros and three
accelerometers in an IMU. So, they can be treated as
six independent measurements. Another example is the
standard GPS single point positioning using the L1 C/A
pseudoranges, where one can estimate the variance
components associated with each satellite [Wang, et al,
2009; Gopaul et al, 2010].

Under the assumption that Q(k) in (2.5) and R(k) in
(2.6) k=1, 2, ..., i, ..., N) are diagonal or partially
diagonal, the individual variance factors for their

uncorrelated components can posteriorly be estimated
as follows:

Vo, ()/Q,, (k)

Siow, (K) = tt 3.20
Giow, (K) = i (0 (at t,) (3.20)
k Vi (u)/Q, (u)
OA-rZOW- (k) = U=kZJ+1 k (Over [tk—j+1’tk]) (321)
PAAD
N 5 /
52 =M (across [t,,t,1) (3.22)

gow;

>r,

for Q(k) after (2.19)and (2.28), and
v; (k)/R, (k)

(at t,)
r, (k)

&|20z, (k)= (3.23)

32 (U)/R, ()

A =k—j
G0y, (K) ===

(over [tk—j+1’tk]) (3.29)

Kk

2.5, (u)

u=k—j+1

Y2 (u)/R, (u)

IR0

90z
for R(k) after (2.21) and (2.29), which could be used
to scale their a priori variances.

In case that Q=Q@1)=Q(2)=..=Q(N) and
R=R(Q)=R(2)=..=R(N), i.e.,, constant in addition
to diagonal, the individual variance components for

their uncorrelated components can posteriorly be
estimated as follows:

(across [t;,t,]) (3.25)
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for Q(k) and

i (k)
1, (k)

(acrossthe data [t,,t,]) (3.28)

@tt,) (3.29)
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&r221 (k) = u=k;]+l
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LRV (1))
A2 Z
Og, = Z
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for R(k), which could be used to update their a priori
variances.

It is worth mentioning that with the VCE of the
independent individual components in the process noise
vector or in the measurement vector, some of the
corresponding redundancy indexes may relatively small,
especially with some of the process noise factors
[Wang, et al, 2009]. This could result in verging on
divergence of the estimated variance while its
redundancy contribution becomes increasingly small in
case the specific variance becomes very small (close to

(over [t_; ;,t]) (3.30)

(across [t;, t]) (3.31)

a high leverage random variable as in linear regression).

To avoid a potential divergence of this type of variance
components, one can simply exclude it from the VCE
process by fixing its variance value (or reasonably
adapt its a priori value).

3.3 General Tactics for how to proceed with the A
Posteriori Precision Evaluation

Frankly, one can utilize the proposed four levels of
a posteriori precision evaluation in many conceivable
combinations in practice, particularly in post
processing. On one hand, one needs to take all factors
into consideration for achieving their best usage. On
the other hand, the understanding and experience of a
specific analyst do play important role. The authors
hope that readers may be able to convert our following
general view into actionable goals in their practice.
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The usage of global variance of unit weight in (3.5)
and (3.6) had better first be considered in order to fit
your system states to the overall quality of the
measurements. The regional and local variances of unit
weight may provide better information about any
regional and local characteristics, anomalies or noise
homogeneities for conducting outlier detection or being
concerned with the solution robustness and/or
adaptivity.

Often, a user may not know the quantitative
characteristic of the process noises as good as the ones
of the measurement noises because one can easily refer
to the technical specifications associated with the
sensors for their reference (or nominal) values. In this
case, one may hardly expect that the a priori covariance
matrix Q for the process noise vector and the a priori

covariance matrix R for the measurement noise vector
at an epoch may share the same variance factor of unit
weight, i.e., the reference variance. Hence, the a
posteriori estimation of the separate variance factors for
Q and R in Section 3.2.5 should be considered because
the whole system through its integration of the
measurements can adjust the absolute noise levels for
both of the process and measurement noises together
simultaneously.

In general, different sensors offer different types of
measurements. Sometime, a single sensor may also
offer multiple types of measurements. For example, an
IMU offers a three dimensional specific force vector
and a three dimensional angular rate vector at an
observation epoch, which can be considered as two
independent groups of measurements. So, one can
posteriorly estimate their own variance factors after
Section 3.2.4. Because the three components in either
the specific force vector or the angular rate vector are
also uncorrelated, one can surely consider having six
independent groups of measurements and performing
variance component estimation for each of them (six
variance components in total) after Section 3.2.5.
Moreover, let take a look into GPS relative kinematic
positioning under the consideration of three
independent types (or groups) of the measurements, i.e.,
L1 C/A (pseudoranges) and L1/L2 carrier phases
associated with each available satellite. Although the
raw measurements are even uncorrelated in each group
from time to time, the double differenced (DD)
measurements become correlated within each group.
However, the DD GPS measurements are still
independent to each other between groups. In this case,
three variance factors can be posteriorly estimated for
each group, but an estimation of any variance
components for specific groups of satellites, for
instance, per elevation angles or per individual
satellites becomes meaningless. Besides, a unique type



of a posteriori variance based robust and adaptive
Kalman filter was once proposed in kinematic
positioning by Wang et al [2010].

While the schemes in Sections 3.2.2 and 3.2.3 are
undertaken for practically improving of the a priori
stochastic models in terms of systems, the schemes
described in Sections 3.2.4 and 3.2.5 possess high
potential for labeling or confirming the variances of
specific measurement types, especially in the so-called
online sensor calibration, especially with using high
quality of carefully planned GNSS observations for
calibrating other sensors. One can definitely benefit all
of the proposed schemes for the a posteriori precision
evaluation in post processing. But at the same time, the
authors are nor suggesting that no benefit may be
gained from them in real time. The outlined local and
regional measures may be taken in real time mode
correspondingly.

Ultimately, it is worth noting that the a posteriori
precision estimation is to improve the a priori
stochastic model based on the being processed real data
instead of guaranteeing a higher precision or accuracy.

In addition, the authors feel obliged to further
comment on the equations for variance factors or
components in Section 3.2.3 — Section 3.2.5. They are
simplified from the rigorous results after Helmert
method [Férstner, 1979; Cui et al, 1993; Li and Yuan,
2002; Wang et al, 2009]. Their approximatability relies
on the large number of redundant measurements, i.e.,
the total redundancy contribution of a system [Férstner,
1979; Li and Yuan, 2002; etc.]. A typical successful
application is its usage in aerial photogrammetry
[Forstner, 1979; Li and Yuan, 2002; etc.]. Wang et al
[2009] specifically studied its approximatability vs. the
rigorous method after Helmert in GNSS kinematic
positioning and showed its choiceness in practice.
Indeed, there could be sufficient number of
measurements from a multi-sensor integrated kinematic
positioning and navigation mission. For instance, a
relative GNSS positioning mission can have 5400
measurements for 30 minutes at 1Hz data rate from 8
satellites using a rover relative to a base station. In
GNSS/IMU integrated direct georeferencing system,
one can even have 1,080,000 IMU measurements at
100 Hz data rate for 30 minutes. In comparison with
our traditional geodetic control network, even in
photogrammetry using Least squares adjustment, an
appropriate utilization of such large number of the
(redundant) measurements and their residuals can
comfortably result in the more reliable variance
component estimation. With using such large number
of the measurements, especially the sufficiently large
number of the redundant measurements, one can well
characterize the process and measurement noises.
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4. Working Examples and Discussions

This section illustrates the utility of a posteriori
precision evaluation in Kalman filtering using a road
test dataset.

4.1 Road Dataset

The data was acquired using our in-house developed
kinematic positioning and navigation system consisting
of a Vectornav VN-100 IMU operating at 100 Hz and a
high-rate NovAtel OEM®6 receiver mounted on a land
vehicle with a second NovAtel OEMS6 receiver acting
as a base station at a fixed position.

The vehicle was driven in circles about a residential
court for 5 minutes after a stationary start for the first 5
minutes, then stayed stationary for5 more minutes, and
was further driven in kinematic for approximately 30
minutes. The top view of the trajectory is shown in
Figure 4.1, while its velocity and acceleration profiles
are shown in Figures 4.2 and 4.3, respectively.
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Figure 4.1: The top view of the trajectory (the coordinates
are presented as local geodetic coordinates
with respect to the starting location)
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Figure 4.2: The Velocity profile of the kinematic trajectory
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The attitude profile of the wvehicle is shown in
Figure 4.4, and its attitude rate-of-change is shown in
Figure 4.5.
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Figure 4.4: The attitude profile of the kinematic trajectory
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The a priori observation standard errors used in
Kalman filtering are listed in Table 4.1.

Table 4.1: The a priori observation standard errors

used in data processing

Observation Type A Priori Standard Error
L1 C/A +50 cm
L1 Carrier Phase +5 mm
L2 Carrier Phase +5 mm
Accelerometer +10 cm/s?
Gyroscope +40°/s

The a priori standard errors of the process noises
used in this example are summarized in Table.

Table 4.2: The a priori standard errors of the process
noises used in data processing

Process Noise A Priori Standard Error

Components
Jerks +10 m/s®
The 2" order of +1°/s°

Attitude Derivatives

4.2 Overview of the Kalman filter

The data processing of this working example uses
an identical approach to the Roll-Pitch-Heading model
to define the Kalman Filter as in [Brunson and Wang,
2023]. Since the focus here is on the posteriori
precision evaluation, special attention is paid to the
definition of the R and Q matrices.

As in [Brunson and Wang, 2023], the state vector
includes the linear position, velocity and acceleration
vectors, as well as the roll, pitch and heading and their
associated time-derivatives. The system model is
constructed using a constant acceleration and constant
attitude first-order time-derivative model. The state
vector also includes any float estimates of the double-
differenced GNSS ambiguity estimates, as well as the
IMU accelerometer/gyroscope biases and scale factor
errors. The system model for these additional state
vector elements is constructed using a random-constant
model.

The Kalman Filter used here is constructed after the
Generic Multisensor Integration Strategy (GMIS) as in
[Brunson and Wang, 2023]. One of the key differences
between the GMIS and the Traditional Multisensor
Integration Strategy (TMIS) is that the GMIS models
all IMU outputs as observations in the Kalman Filter.
This allows for the direct inclusion of IMU biases and
scale factor errors in the state vector, and additionally
allows for VCE to characterize the performance of the
IMU in GNSS/IMU integrated systems.



Given the definition of the state vector, the process
noise vector consists of the jerk (i.e. third-order
position time-derivative) and the attitude second-order
time-derivative vectors. The process noise vector also
includes those factors relating to the shaping filters for
estimating the IMU systematic errors and GNSS float
ambiguity estimates, although they are not the focus of
this analysis. The process noise vector is partitioned as
follows

w=[wh wh Wi whel (4.1)
where w,, is the system jerk; w,, is the vector of second
time-derivatives of the attitude parameters; w;
describes the first-order time derivatives of the GNSS
float ambiguity estimates; and wy,; describes the first-
order time derivatives of the gyroscope/accelerometer
bias and scale factor error estimates.

The corresponding covariance matrix for the
process noise vector is defined as

[pr 0 0 0 ]
|
I

|0 Q, © 0
Q‘! 0 0 Q, o (42
[ 0 0 0 QWIMUJ

where the individual diagonal elements of Qu, and
Q,,, are defined after Table 4.2 Meanwhile, the
diagonal elements of @,,, and @, are quite small,
since these quantities are not expected to drift quickly.

The observation vector at epoch k consist of three
gyroscope  observations,  three  accelerometer
observations, the double differenced L1 C/A, and L1
and L2 Carrier Phase observations. The corresponding
covariance matrix for the owverall observation vector
may therefore be defined to be

[Rg 0 0 0 0 1
| 0 R, 0 0 0 |
R :| 0 0 Rgpse 0 0 | (4.3)
0 o 0  Rgpsiy 0
lo o o 0 Repsal

where R, and R, are 3x3 diagonal matrices describing

the accuracy of the gyroscope and accelerometer
outputs, respectively, Rgpsc models the covariance

matrix of the double-differenced L1 C/A observations,
and Rgpsy1 and Rgps 1, model the covariance matrices

of the L1 and L2 Carrier Phase observations,

respectively.
It is important to bear in mind that R, and R, are
both diagonal matrices, since each

gyroscope/accelerometer axis is assumed to be
statistically independent. Rgpsc, Rgps1 and Rgpsio
are fully populated, since all double-differenced GPS
observations become correlated due to the use of a base
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satellite in the double differencing process at each
epoch. Practically, this means that separate variance
components could be used to characterize each axis of
an IMU in a very straightforward manner, but that
doing this sort of analysis for individual double-
differenced GPS observations is a much more involved
process.

4.3 The A Posteriori Evaluation of Observation and
Process Noise Covariance Matrices

The appropriate tuning of the observation and
process noise covariance matrices is a critical task in
any Kkinematic positioning application. This is often
initially determined using instrument specifications, but
there are several factors that are generally unaccounted
for in these a priori accuracy estimates:

i. Instrument accuracies are typically evaluated in a
controlled laboratory environment, and this level of
accuracy is rarely achieved in a complex real-world
environment.

ii. There are many environmental effects that can
significantly degrade the quality of signals from a
particular positioning sensor. Examples include
multipath errors in GNSS observations and the
effects of vibration on IMU observations.

Properly accounting for these factors is complicated
and in practice, there can be a lot of guesswork
involved in this process. The a posteriori precision
evaluation can provide valuable tools for refining the
observation and process noise covariance matrix in a
post-processing environment.

The standard error factors for each of the
observation types and process noise components were
evaluated over the duration of the kinematic dataset and
used to iteratively scale the a priori standard errors.
Once the standard error factors all converged to
approximately 1, the covariance matrices were
considered well-tuned within the system. Here, it took
5 iterations for the tuning of the observation and
process noise covariance matrices to converge, and
Figures 4.6 and 4.7 illustrate this process.

Figure 4.6: The standard error factors estimated for each
observation type as part of the iterative tuning of the
observation covariance matrix R.

After the final tuning of the observation and process
noise covariance matrices, the estimated a posteriori
standard errors are summarized in Table for the
observations and Table for the process noise.
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Figure 4.7: The a posteriori standard error factors

for each type of the process noises as

part of the iterative tuning of the

process noise covariance matrix.

Table 4.3: The a posteriori observation standard errors.

Observation Type A Posteriori Standard
Error
L1 C/IA +74 cm
L1 Carrier Phase +10 mm
L2 Carrier Phase +11 mm
Accelerometer +11 cm/s?
Gyroscope 145 °/s

Table 4.4: The a posteriori process noise standard

errors.
Process Noise A Posteriori Standard
Components Error
Jerk +14 m/s°
The 2™ order of +1.1 °/s°
Attitude Derivatives
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4.4 Time-Varying Standard Error Factor
Estimates

Section 4.2 focuses on using the estimated
observation and process noise residuals to determine
overall (or global) standard error factors. This section
instead focuses on time-varying estimates of the
standard error factors for different observation types.

It is possible to estimate epoch-wise (local) standard
error factors for the observation and process noise
vectors using their residuals and redundancy
contributions as defined in Section 2.3.2. It is necessary
to understand the limitations of doing this, since
redundancy contributions may be very small for a given
epoch, particularly for the process noise vector (Figure
4.8). To illustrate this, we present the redundancy
contributions of the observation, process noise, and
system state vectors in Figure 4.8. It is clear that the
observation vector makes the most dominant
contribution to the system’s overall redundancy. Since
the redundancy contribution of the process noise vector
to the system is relatively small for a given epoch, the
epoch-wise estimates of the process noise standard
error factors will be unreliable.

Epoch-Wise Redundancy Contributions in the Kalman Filter

"
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Figure 4.8: The epoch-wise redundancy contributions
of the observation, process noise, and
predicted system state vectors over the
kinematic dataset (Note: the sum of all
three redundancy contributions is equal to
the number of observations plus the
number of state constraints)
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To counter this issue, the standard error factors may
be estimated using a moving window (regional) to
reduce the time-resolution of the standard error factor
estimates, but significantly improve their reliability.
See Figure for an illustration of the effects of different
window sizes on the estimated standard error factors
for the overall observation vector. Figure shows the
effects of different window sizes on the standard error
factors for the process noise vector.
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error factors. observations.

Doubtless, the standard error factors may be Moreover, the separate standard error factors may
estimated for the different observation groups: L1 C/A be estimated for each of the three gyroscopes and
(Figure 4.11), L1 Carrier Phase (Figure 4.12), L2 accelerometers as long as they are uncorrelated with
Carrier Phase (Figure 4.13), gyroscopes (Figure 4.14), one another (Figure and Figure, respectively).
and accelerometers (Figure 4.15).
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Figure 4.10: An illustration of the effects of different Figure 4.13: The time-varying standard error factor
window sizes on the process noise estimates for the L2 Carrier Phase
standard error factors. observations.
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Figure 4.11: The time-varying standard error factor estimates for the Gyroscope observations.

estimates for the L1 C/A observations.
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Figure 4.16: The time-varying standard error factor

estimates for the individual components
of the Gyroscope observations.
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Figure 4.17: The time-varying standard error factor

estimates for the individual components
of the Accelerometer observations.
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The estimated standard error factors for the process
noise jerk and angular second derivative components
are shown in Figure 4.18 and Figure 4.19, respectively.
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Figure 4.18: The time-varying standard error factor
estimates for the process noise elements
relating to the system jerk
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Figure 4.19: The time-varying standard error factor
estimates for the process noise elements
relating to the system attitude second
derivatives

To illustrate the effects of applying the overall
standard error factor to the estimated state covariance
matrix, see the a priori and a posteriori standard
deviation plots for the position (Figure 4.20) and
attitude (Figure 4.21).

L
356000

4.5 On Variance Component Convergence for
Different A Priori Standard Errors

As long as the a priori estimates of the
observation/process noise standard errors are relatively
close to their a posteriori estimates, they should
generally converge to the same values. To illustrate this,
the same road test dataset was processed while over-
estimating the observation standard errors. The a priori
observation standard errors used are summarized in
Table 4.5.
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Figure 4.20: The time-varying standard deviations of
the East, North, Up local geodetic
coordinates of the system
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Figure 4.21: The time-varying standard deviations of
the roll, pitch, and heading attitude
parameters.

After 5 iterations of tuning the standard errors using
variance component estimation, the estimated a
posteriori observation standard errors are summarized
in Table 4.6, along with their percentage difference
from the values estimated in Table 4.3.

Table 4.5; The a priori observation standard errors
used in data processing.

Observation Type A Priori Standard Error
L1 C/A +100 cm
L1 Carrier Phase +15 mm
L2 Carrier Phase +15 mm
Accelerometer +15 cm/s?
Gyroscope +60°/s

Table 4.6 clearly illustrates that the a posteriori
standard errors of the observations are primarily
influenced by how well the collected data fits the
observation models, and are uninfluenced by their
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initial a priori estimates as long as they have been
well approximated based on user’s best knowledge of
the being system and field conditions. This behaviour
makes VCE very well-suited to adaptive filtering
techniques.

Table 4.6: The a posteriori standard errors estimated
for the initial values summarized in
Table 4.5, and a comparison to the a
posteriori standard errors described in

Table4.3.
Observation A Posteriori Difference
Type Standard Error | from Tab. 4.3

[%]

L1 C/A +76 cm 2.7

L1 Carrier Phase +11 mm 9.1

L2 Carrier Phase +11 mm 0.0

Accelerometer +12 cm/s? 9.1

Gyroscope 144 °/s 2.2

5. Conclusions and Remarks

This paper attempts to standardize the a posteriori
precision evaluation process in discrete Kalman
Filtering based on the standard Kalman filter described
in Section 2, drawing from similar tasks in Least-
Squares analysis. This enables the following a
posteriori precision analysis:

1). Estimation of the redundancy of a Kalman Filter,
as well as the redundancy contributions of the
process noise, observation, and predicted state
vectors.

2). Estimation of variance factors for each of the
process noise, observation, and predicted state
vectors, along with any independent partitioned
elements of these vectors.

3). Evaluation of global variance factors that describe
the overall performance of the Kalman Filter over
an entire dataset.

4). Evaluation of local variance factors that describe
the time-varying performance of the Kalman Filter
over the course of a dataset. This includes
windowed analysis to improve the reliability of
variance factor estimates.

Each of them has been explored in the given
working example based on a road test dataset.

It is worth noting that such a posteriori precision
evaluation blends the a priori stochastic models and the
quality of the measurements into a unity — as such, the
delivered precision and accuracy of the solution in
discrete Kalman filtering may well be related with the
being processed data. This process does not necessarily



“improve” the precision and/or accuracy of the solution.

Rather, our understanding of the Kalman Filtering
system improves as a result of this proposed a
posteriori precision evaluation, and this in turn
improves the reliability of our results.
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