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Abstract: This manuscript is focused on 

standardizing the process of the a posteriori precision 
evaluation in discrete Kalman filtering. Although the a 

posteriori precision evaluation of the solution was 
considered as indispensable within the method of least 
squares, the solution of a Kalman filter shows a lack of 
a posteriori precision evaluation for too long. Even 
worse, there often exists appalling confusion about 
what is considered as the a posteriori precision of the 
solution in Kalman filtering. The authors hereto 
propose to put the a posteriori precision evaluation of 

the solution into practice at four different levels in 
Discrete Kalman filtering through estimating: (i) the a 
posteriori variance of unit weight (or reference 
variance), (ii) the separate a posteriori variance factors 
for the process and measurement noise vectors, 
respectively, (iii) the individual a posteriori variance 
factors for the independent noise groups, and (iv) the 
individual a posteriori variance factors (or components) 

for the independent process noise factors and 
measurement types. A working example is presented to 
illustrate the proposed a posteriori precision evaluation 
in Kalman filtering using a road test based on the 
double-differenced GPS L1 C/A, L1 and L2 carrier 
phases and the specific force and angular rate 
measurements from an MEMS IMU. With the rapidly 
increasing utilization of the Kalman filter in modern 

applications, the inclusion of the proposed a posteriori 
solution precision evaluation, as part of the standard 
solution, in discrete Kalman filtering is not only 
necessary, but also can be expected to happen soon 
within our grasp. 

KEY WORDS: a posteriori precision evaluation, 

Kalman filtering, variance factor (variance of unit 
weight), residuals, redundancy contribution, variance 
component estimation.     

1. Introduction 

“Data fusion describes different methods and 
techniques for combining data, information, and 

knowledge in order to improve data quality, reduce 
uncertainty, extract essential features and provide 
statistics and analytics, …” [ScienceDirect, 2025]. 
Undoubtedly, estimation methods and data (inclusive 
of information and knowledge) are the linchpins in data 
fusion. “Estimation, which fits in between the problems 
of measurement and validation, deals with the 
determination of those physical quantities that cannot 

be measured from those that can be measured” [Mendel, 
1999]. Data are a series of observations, measurements, 
or facts [collinsdictionary.com]. A typical application is 
a multi-sensor integrated kinematic positioning and 
navigation system, the essential component of many 
applications such as autonomous car driving, 
unmanned aerial vehicles, and direct georeferencing 
technology for automatic geospatial data acquisition at 

large. Among different estimation techniques, the 
Kalman filter definitely belongs to the most significant 
for estimating the state of a dynamic system from noisy 
measurements toward achieving optimal solution. The 
general consensus is that measurements are decisive, no 
matter with which optimal estimation techniques, for 
example, least squares method, minimum variance, or 
others. 

In Kalman filtering, one seeks for the best possible 
estimate of the state vector of a system through 
combining its system model (for prediction) with 
measurements on the ground of the principle of 
minimum variance. With both of the system and 
measurement models, the a priori stochastic model for 
them must be presumed before conducting the 
estimation, which describes the inherent randomness or 

uncertainty in both the being observed system and the 
being acquired measurements, specifically associated 
with the initial state vector and process noises of the 
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system and the measurement noises. Such stochastic 

model is paramount of importance in Kalman filtering. 

It is well known that the a posteriori precision and 
accuracy evaluation has been an inalienable part of 
least squares method [Wright and Hayford, 1906; 
Helmert, 1907; WCSM, 1959; Wells and Krakiwsky, 
1971; Cross, 1983; Koch, 1987; Caspary 1988; Cui et 
al, 1993; Taylor, 1997; Rao and Toutenberg, 1999; 
Ghilani and Wolf, 2006; Kariya and Kurata, 2004; 

Wang et al, 2019]. But this topic barely appears as a 
standard part of the solution in Kalman filtering 
[Anderson, 1979; Brown and Huang, 2012; Chui and 
Chen, 2009; Eubank, 2009; Gelb, 1974; Grewal and 
Andrews, 2008; Salzmann, 1988; Simon, 2006; 
Teunissen et al, 2021; Zarchan, 2005; etc.]. There even 
often exists some confusion elementarily about what 
represents the a posteriori precision of the estimated 

state vector in Kalman filtering. The variance-
covariance propagation for the optimally estimated 
state vector from time to time is commonly called the a 
posteriori precision (or accuracy), which is, however, 
dominantly dependent on the a priori stochastic model 
and has nothing to do with the actual behavior of 
system process and measurement noises associated 
with the being processed data. This deficiency in the 

solution formulation of a Kalman filter is 
incomprehensible either theoretically or practically. 
Fortunately, quite a few antecessors did touch on this 
problem to a certain extend [Pelzer, 1987; Koch, 1990; 
Tao, 1992; etc.]. The a posteriori variance of unit 
weight was introduced to geodetic deformation analysis 
wherever geodesists utilized the discrete Kalman filter 
for processing their multi-epoch repeated observations 

[Pelzer, 1987; Tao, 1992]. Yu et al (1988) proposed an 
approach to incorporate variance component estimation 
in the filtering process in monitoring networks. 
Furthermore, Koch [1990] clearly stated the problem 
where the covariance matrix Q(k) of the process noise 
vector and the covariance matrix R(k) of the 

measurement vector could have their unknown variance 
factors in Kalman filtering.      

Nowadays, more and more applications come out 
for conducting data fusion by applying the Kalman 
filter. Their accuracy requirements could be as high as 
a few cm in kinematic positioning, for example, in the 
modern direct georeferencing technology specifically. 
There is an urgent need to add the appropriate a 
posteriori precision assessment to its solution 
formulation. The overall objective of this manuscript 

aims how one may posteriorly improve the a priori 
stochastic model in terms of solution 
precision/accuracy evaluation with considering the 
implication of residuals of the predicted state vector, 
process and measurement noise vectors in Discrete 

Kalman filtering. Accordingly, this manuscript would 

systematically structure how to perform the a posteriori 
precision and accuracy assessment so that one can 
standardize its analytical formulation and also practical 
execution as an inalienable part of a Kalman filter. 

This introduction is followed by Section 2 that 
summarizes the standard Kalman filter inclusive of 
system and measurement models along with the general 
assumption of stochastic model of process and 

measurement noise vectors, the core of the solution and 
its essential accompaniments to prepare for the 
theoretical basis. Section 3 moves on the main 
objective of this manuscript: a posteriori precision 
evaluation in discrete Kalman filtering. Then, a 
working example is presented from a real test data 
acquired by using a land-based GPS/IMU integrated 
kinematic positioning system in Section 4. At the end, 

Section 5 concludes the manuscript.    

2. Standard Kalman Filter 

2.1 System and Measurement Models 

This section straightforward configures the 
formulation of a Kalman filter in discrete time that is 
referred to as the standard form through this manuscript. 

Assume to have a linear state-space system with its 
discrete observation made over a time period of 

),...,,...,,( Nk tttt 10 , where each time instant implies an 

observation epoch. For simplification without loss of 

generality, the deterministic system input will be left 

out and the time instant kt  will also be substituted by k. 

In general, at an observation epoch k, one has the 
system model 

)(),()(),()( kkkkkkk wBxAx 111   (2.1) 

wherein )(),(),( kkk wxx 1  are the state vector at k, 

the state vector at k - 1, and the process noise vector, 
respectively while ),( 1kkA  and ),( 1kkB  are the 

system state and process noise transition matrices from 
observation epoch k – 1 to epoch k, respectively. For 
the purpose of predigesting the further analytic 
expressions, ),( 1kkA  and ),( 1kkB  are simplified 

to )(kA  and )(kB wherever no confusion might be led 

to. In addition, the initial state vector is given as  )(0x  

with its covariance matrix of )(0
xxD . 

The accompanying measurement model at the same 
observation epoch is given as 

)()()()( kkkk ΔxCz     (2.2) 

wherein )(),(),( kkk ΔCz  are the measurement vector, 

the observable design matrix and the measurement 
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noise vector, respectively at k, respectively.  

In an encouraging alternate way, Wang [1997] 
radically expressed (2.1) in two independent groups of 
pseudo-measurement vectors as follows: 

),()(),()(

)/()(),()(

111         

  111





kkkkkk

kkkkkk

T

xx ADAD

xxAl

xx ll

x (2.3) 

)()()()( kkkk
www QDwl ll             (2.4) 

wherein )(kxl , )(kwl  are the two pseudo measurement 

vectors from the purely predicted state vector and the 
process noise vector associated with their covariance 
matrices )(k

xllD  and )(k
wwllD , respectively. By 

combining (2.2), (2.3) and (2.4) together with the 
stochastic model as in Section 2.2, the identical results 
were derived as in Section 2.3.1 and further delivered 
unique additional quantities for conducting a 
comprehensive error analysis in discrete Kalman 
filtering [Wang, 1997]. 

2.2 Stochastic Models 

Three basic assumptions about the process and 
measurement noises are practically made in general. 

First, the process noise vector satisfies 

))(,(~)( kk QoNw      (2.5) 

wherein ),(~ VeNu   reads that u (a variable or a 

vector) “conform” to the normal distribution with an 
expectation of e  and covariance matrix of V . (2.5) 

means that the process noise vector )(kw  conforms to 

the normal distribution with its expectation of o  (zero 

vector) and variance matrix of )(kQ , in other words, 

)(kw  is characterized as white noise with its variance 

matrix of )(kQ  

Second, the measurement noise vector )(kΔ  is 

attributed to 

))(,(~)( kk RoNΔ       (2.6) 

i.e., a normal distribution with its expectation of o  

(zero vector) and variance matrix of )(kR . 

Third, the process and measurement noises between 

two epochs i and j ( ji  ) are commonly characterized 

as independent to each other, that is,  

Oww ))(),(( jiCov     (2.7) 

OΔΔ ))(),(( jiCov     (2.8) 

OΔw ))(),(( jiCov     (2.9) 

and, furthermore, )(kw  and )(kΔ  are also uncorrelated 

to the initial state vector: 

Oxw ))(),(( 0iCov              (2.10) 

OxΔ ))(),(( 0iCov              (2.11) 

All the equations from (2.5) to (2.11) express the a-
priori stochastic model and belong to a vitally 
necessary part of the standard formulation in discrete 

Kalman filtering. 

2.3 The Solution 

The epochwise solution for the state vector from the 
system and measurement models (Section 2.1) is 
commonly derived after the Principle of Minimum 
Variance [Gelb, 1974; etc.]. Under the assumption of 
normal distributions as in (2.5) and (2.6) plus (2.7) – 
(2.8), the solution after the Principle of Minimum 
Variance is undoubtedly identical to the solution after 

the Principle of Least-Squares [Wang, 1997; Wang et 
al, 2023].  

2.3.1 The core of the solution 

As the solution derivation is so well known, the core of 
the solution is directly summarized in Table 2.1 [Wang, 
2009].  

Table 2.1 The core of the solution in Kalman 
filtering 

The time update (or the one step prediction) 

)(ˆ)()/(ˆ 11  kkkk xAx                               (2.12) 

)()()(

)()()()/(

kkk

kkkkk

T

T

xxxx

BQB

ADAD





                         

11
                  (2.13) 

The measurement update (or the optimal estimate) 

)()()/(ˆ)(ˆ kkkkk dGxx  1                     (2.14) 

T

xx

T

xx

kkkkkk

kkkk

)]()()[/()]()([

)()()()(

CGEDCGE

GRGD





1      

  (2.15) 

Note: E is the identity matrix. 

The system innovation and gain matrix: 

)/(ˆ)()()( 1 kkkkk xCzd                         (2.16) 

)()()/()()( kkkkkk T

xxdd RCDCD  1                (2.17) 

)()()/()()( kkkkkk dd

T

xx

11  DCDCG            (2.18) 

2.3.2 The essential accompaniments 

In order to successfully deliver the solution as in 
Table 2.1, a number of the concomitant analytic 
analyses are run in parallel with the recursive time and 
measurement updates in Kalman filtering, which may 
include model optimization, statistic characterization of 

the process noises and measurement noises, and 
adaptive and/or robust measures. For example, the 
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characterization of the innovation series normally 

belongs to the key processes in Kalman filtering, so 
does the system fault detection. In line with the similar 
purpose, one demands for estimating and analyzing 
plenty of additional essential auxiliary quantities as 
necessary part of the data fusion process in Kalman 
filtering. 

To avoid waste time on triviality, let come straight 
to the main theme. The objective is here laid on the 

comprehensive error analysis in discrete Kalman 
filtering [Wang, 1997, 2008, 2009; Wang et al, 2021]. 
By considering the three groups of the epochwise 
available uncorrelated stochastic information: (1) the 
process noise vector; (2) the purely predicted state 
vector (exclusive of the process noises) and (3) the 
measurement vector, Wang [1997] successfully 
introduced an alternate derivation that not only reached 

the identical solution as the one in Section 2.3.1 and 
also delivered certain essential accompaniments to the 
core solution, which are summarized below [Wang, 
1997, 2008, 2009]: 

1). The residuals of the process noise vector )(kw  

)()()/()()()( kkkkkkk xx

T

w dGDBQv 11       (2.19) 

)()()()()()()()( kkkkkkkk dd

TT

ww
QBCDCBQD vv

1                                                              

(2.20) 

2). The residuals of the measurement vector )(kz  

)(])()([)( kkkkz dEGCv           (2.21) 

)()]()([)( kkkk
zz

RGCED vv          (2.22) 

3). The residuals of the predicted state vector )(kxl  

)()()/()()( kkkkkk xx dGDDv
xxx lll 11           (2.23) 

)()()()()()( kkkkkk dd

T

xxxxxlxl
llllvv DCDCDD

1  (2.24)                                                    

wherein  

)/()()( 11  kkkAkx xl                            (2.25)                                                    

)()()()( kkkk T

xx ADAD
xx ll 1        (2.26) 

4). The redundancy index of )(kw  

)}()()()()()({)( kkkkkktracekr dd

TT
BCDCBQw

1      

                       (2.27) 

which is the total redundancy contribution of the 
process noise vector. When )(kQ  is diagonal, the 

individual redundancy index is given as 

iidd

TT kkkkkkkr
i

)}()()()()()({)( BCDCBQw

1 (2.28) 

5). The redundancy index of )(kz  

)}()({)( kktracekrz GCE                         (2.29) 

which is the total redundancy contribution of the 

measurement vector. When )(kR  is diagonal, the 

individual redundancy index is given as 

iiz kkkr
i

)}()({)( GC1              (2.30) 

6). The redundancy index of )(kxl  

)}()()()({ kkkktracer dd

T
CDCD

xxx lll

1               (2.31) 

which is the total redundancy contribution of the 
predicted state vector. As the components in the 

predicted state vector )(kxl  are correlated to each 

other in general, their individual redundancy 
indexes are ordinarily not interpretable and 
therefore not adopted in practice.                                                    

7). The total redundancy of )(kw , )(kz  and )(kxl  

)()()()()( kpkrkrkrkr zw 
xl

             (2.32) 

wherein )(kp is the dimension of )(kz , i.e., the 

total system redundancy is equal to the number of 
the measurements in Kalman filtering. 

Wang, et al [2009] described three unique 
fundamental and practical usages of this redundancy 
contribution in Discrete Kalman filtering: (i) the 
degrees of freedom of test statistics [Wang, 1997, 
2008], (ii) the simplified algorithm of variance 
component estimation [Wang. 1997, 2008; Caspary and 
Wang, 1998; Wang et al, 2009], and (iii) the a 
posteriori variance components based robust Kalman 

filter [Wang et al, 2010]. 

By the way, the authors kindly admit that the 
equations (2.21) and (2.22) became available from the 
very beginning as they could easily be deduced 
together with the core solution in Section 2.3.1. They 
are listed here just for completeness with all the 
residuals due to their necessity for the a posteriori 
precision or accuracy assessment in Section 3 of this 

manuscript. However, all the rest equations first 
appeared in [Wang, 1997]. Due to the traditional 
habitude, almost all the basic statistical analysis in 
Kalman filtering has been focused on the system 
innovation series, indeed [Mehra, 1970; Teunissen et al, 
2021; etc.]. Statistical analysis of the process noise 
residuals (refer to (2.19) and (2.20)) has been scarce so 
far due to the lack of such analytic expression directly 

from the solution derivation after the Principle of 
Minimum Variance. All the equations from (2.19) to 
(2.32) as a whole provided for the fundamental of not 
only the comprehensive error analysis and also 
reliability theory in Discrete Kalman filtering [Wang, 
1997, 2008, 2009 etc.], which were further extended to 
Kalman filter with constraints [Wang and Brunson, 
2023]. 
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3.  A Posteriori Precision Evaluation in 

Discrete Kalman Filtering 

This section first review how the precision of the 

estimated parameters has been posteriorly evaluated in 
the Method of Least Squares or more often called the 
Least Squares Adjustment in Geodesy and Surveying 
Engineering, and then proposes the similar framework 
with which the a posteriori precision can practically be 
undertaken in Discrete Kalman filtering. To avoid any 
confusion between precision and accuracy of an 
estimate after a specific optimal principle, the word, 

precision, is preferred here. As a matter of fact, it is 
well known that the precision and accuracy will merge 
in terms of the estimated states or parameters on the 
ground of the Method of Least Squares and the 
Principle of Minimum Variance as long as their 
unbiasedness holds and it is unnecessary to pursue their 
distinction here in this manuscript.   

3.1 The State-of-Art A Posteriori Precision 

Evaluation in the Method of Least Squares 

It is so matured how scientists and engineers 
posteriorly evaluate the precision of the least squares 
solutions. Helmert [1907] distinctly dwelt upon the 
topic of the a posteriori precision and accuracy 
evaluation repeatedly in his magnum opus of historic 
significance of “Die Ausgleichungsrechnung nach der 

Methode der Kleinsten Quadrte” (The Least Squares 
Adjustment), for example, (i) Section VI 

Schlukontrolle (Final Control) in §7 under Chapter 3, 
(ii) Section III Mittlerer Fehler (standard error) in §2 
under Chapter 4, and (iii) Section III Der mittlere 
Fehler der Gewichtseinheit (standard error of unit 

weight) in §2 under Chapter 4. A subsection of the a 
posteriori precision evaluation can also be found in 
Chapter IV Adjustment of Indirect Observations in 
[Wright and Hayford, 1906]. Obviously, the a 
posteriori precision evaluation of the estimated 
parameters has been not only based on the a priori 
stochastic models (especially the measurement 
weighting scheme), the geometry of the linear or 

linearized models, and also posteriorly grounded on the 
measurement residuals and the redundancy contribution 
in a linear or linearized system. Such a posteriori 
precision evaluation has consistently been one of the 
standard components in the method of least squares and 
can be found in all the widely used higher education 
textbooks [WCSM, 1959; Wells and Krakiwsky, 1971; 
Cross, 1983; Koch, 1987; Caspary 1988; Taylor, 1997; 

Rao and Toutenberg, 1999; Ghilani and Wolf, 2006; 
Kariya and Kurata, 2004; Wang et al, 2019; etc.].   

In summary, the a posteriori precision evaluation of 
the estimated parameters has been standardized as an 

essential component in the method of least squares (or 

least squares adjustment) for a very long time (more 
than a century). 

3.2 A Posteriori Precision Evaluation in Discrete 
Kalman filtering 

3.2.1 Introduction 

In Kalman filtering, the equation (2.15) has 
generally been regarded as the a posteriori covariance 
matrix of the optimally estimated state vector, for 

example, stated on page 173 in Farrell [2008]. One 
could not resist asking what impacts this so-called a 
posteriori covariance matrix here, indeed. In other 
words, what decides )(kxxD  in (2.15)? It does involve 

the system and measurement models given in (2.1) and 
(2.2) and also the a priori stochastic model from (2.5) 

to (2.11). But how about the a posteriori random errors 
presented by the residuals of the process and 
measurement noise vectors? Their impacts have never 
been integrated into (2.15) yet if readers seriously 
review those popular textbooks of the Kalman filter and 
the overwhelming relevant literature [Gelb, 1974; 
Anderson and Moore, 1979; Salzmann, 1988; Zarchan, 
2005; Simon, 2006; Grewal and Andrews, 2008; Chui 

and Chen, 2009; Eubank, 2009; Brown and Hwang, 
2012; Teunissen et al, 2021; etc.]. In contrast to the a 
posteriori precision evaluation in the method of least 
squares, the existence of this deficiency in Kalman 
filtering is indeed hard to believe as there have been 
plenty of the research activities to undertake a lot more 
complicated issues, instead of undertaking this 
fundamental aspect to enhance the core solution in 

Kalman filtering. However, we have to genuinely 
confess to this reality.  

Fortunately and very encouragingly, a few of our 
antecessors in the field of Geodesy did initiate this very 
specific aspect [Pelzer, 1987; Yu et al, 1988; Tao, 1992; 
Koch, 1990]. Especially, a description of “Variance 
Factor Unknown” for the covariance matrix Q(k) of the 
process noise vector and the covariance matrix R(k) of 

the measurement vector was given in Section 318 
Linear Dynamic Systems, Chapter 3 Models and 
Special Applications in the well-known book, Bayesian 
Inference with Geodetic Applications [Koch, 1990]. A 
relatively systematic studies of it have further been 
conducted comprehensively in [Wang, 1997, 2008, 
2009; Wang, et al, 2009, 2010, 2021, 2023; Qian, et al, 
2016; Qian, 2017].  

Accordingly, this section enters upon proposing a 
practically feasible structure with its focus on the a 
posteriori estimation of variances at different level for 
achieving the a posteriori precision in discrete Kalman 
filtering.  
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3.2.2 Variance of Unit Weight 

The variance of unit weight (also commonly called 
the variance factor or the reference variance denoted as 

2

0 usually) characterizes the estimated variance of a 

hypothetical observation with unit weight when dealing 
with (real and pseudo) measurements of unequal 

accuracy [Helmert, 1907; Ghilani and Wolf, 2006; etc.]. 
It is one of the most essential quantities in statistical 
quality evaluation and hypothesis testing. On one hand, 
one can posteriorly estimate the variance factor by 
using the system innovations (refer to (2.16) and (2.17)) 

or the residuals (refer to (2.19) – (2.24). On the other 

hand, it can be estimated epochwise (locally), over a 
specific time interval (regionally) or across the whole 
dataset (globally). 

The local variance of unit weight at an arbitrary 

instant kt is estimated by using the system innovation 

vector in (2.16) and (2.17) [Pelzer, 1987; Tao, 1992] 

)(

)()()(
)(ˆ

kp

kkk
k dd

T

l

dDd
1

2

0



    (3.1) 

or the residuals from (2.19) to (2.24) [Wang, 1997] 

)(

)()()()()()()()()(
)(ˆ

kp

kkkkkkkkk
k

z

T

zw

T

w

T

l

vRvvQvvDv
xxxx llll

111

2

0

 
   (3.2) 

wherein the subscript l stands for local or epochwise 
and the subscript 0 stands for the reference variance 
(same below). The equivalence between (3.1) and (3.2) 
was proofed by Wang [1997]. 

The regional variance of unit weight at an arbitrary 

instant kt can be estimated over a time window, for 

example, ),..., 0( 1  jtt kjk
 (with using j epochs 

together) in analog to (3.1) and (3.2): 


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jki

k

jki
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T

r ipiiik
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0 )(/)()()()(ˆ dDd   (3.3) 
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w
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111

2

0
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}))()()()()()()()()({

)(ˆ

vRvvQvvDv
xxxx llll

  (3.4) 

by using the system innovation and residual series over 
the specified time window, respectively. The subscript 
r in (3.3) and (3.4) stands for regional. (3.3) and (3.4) 
are equivalent and deliver a more stable average value 
than (3.1) and (3.2) as the epochwise estimated 
variance factors may wander around from time to time. 
The validity of (3.3) and (3.4) hold due to the fact that 
the system innovation and residuals are independent 

between different epochs under the given stochastic 
models in Section 2.2 [Tao, 1992; Wang, 1997].    

The global variance of unit weight can be further 

estimated across the whole data over (
Nk ttt ,...,1,..., ): 





N

i

N

i

dd

T

g ipiii
11

12

0 )(/)()()(ˆ dDd   (3.5) 
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ˆ

vRvvQvvDv
xxxx llll

                 (3.6) 

wherein the subscript g in (3.5) and (3.6) stands for 
global. As long as the a priori stochastic models, i.e., 
the covariance matrices, )(),...,(),( kRRR 21  and 

)(),...,(),( kQQQ 21 along with )(0
xxD  stochastically 

well characterize the system as defined in Section 2.1, 
the estimated a posteriori variance factors should 
sufficiently close to the Unity. Otherwise, one may 

consider posteriorly scale )(kxxD  using an estimated 

variance factor, 
2

0̂ , as follows: 

)(ˆ)(ˆ kk xxxx DD
2

0     (3.7) 

which represents the a posteriori covariance matrix of 

)(ˆ kx  with having the influence of the used data via 2

0̂ . 

Unfortunately, the lack of this a posteriori measure has 
been widespread indeed.   

The estimate after (3.5) and (3.6) is preferred in post 
processing because it provides an overall evaluation in 
terms of the variance factor as a scale in its magnitude 
to reflect the average noise level of the entire system 
solution so that one may scale the given a priori 
covariance matrices and then iterate the data fusion 
until its estimate statistically converges to the unity. 

The estimate after (3.1) and (3.2) can be utilized to 
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effectively conduct system diagonals for any fault 

related to the system model and/or the measurement 
model. One may use the estimate after (3.3) and (3.4) 
to identify any data gaps in measurements, any over 
parameterization, or modeling deficiency. In brief, how 
one appropriately utilizes them is closely related to the 
applications and analysts’ understanding of the being 
processed data. 

3.2.3 Separate Variance Factors for Q and R 

What about if the a priori covariance matrix )(kQ of 

the process noise vector )(kw  does not share the same 

variance factor with the a priori covariance matrix 

)(kR of the measurement vector )(kz ? In connection 

with the given question, this section seeks for a 
practically feasible solution.  

In Kalman filtering, the process noise vector and the 
measurement noise vector could straightforwardly be 
simply treated as two uncorrelated types of the 
observation (or pseudo observations) so that they are 
associated with their own stochastic models. Besides 

Section 3.2.1, one can further estimate the variance 
factors for Q and R simultaneously. The variance 

component estimation (VCE) method after Helmert in 

the method of least squares [Welsch, 1978; Főrstner, 
1979; Koch, 1987; Cui et al, 1993; etc.], for example, 
can be deployed for such purpose. For practical 
purpose, Főrstner [1979] proposed a simplified 
algorithm directly based on the measurement residuals 
and their redundancy contribution, which has been 
popularized in aerial photogrammetry where the 
number of the redundant measurements is large. By 

taking the advantage of high accumulative redundancy 
in Kalman filtering, Wang [1997] successfully realized 
Főrstner’s simplified algorithm, by which the given 
question at the start can be resolved. In analog to (3.2), 
(3.4) and (3.6), from (2.19) - (2.22) and (2.27) and 
(2.29), the local, regional and global variance factors 
are posteriorly estimated for Q (with the subscript of Q) 
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and for R ( with the subscript of R) 
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Thus, one can choose specific estimates of these 
two variance factors to scale the a priori process and 
measurement noise matrices as follows:  

)(ˆ)(ˆ kk QQQ
2

0                (3.14) 

)(ˆ)(ˆ kk RRR
2

0                (3.15) 

which are called the a posteriori covariance matrices of 
the process and measurement noise vectors, 
respectively. 

3.2.4 Individual Variance Factors for the 

uncorrelated groups of process noise factors 
and measurements 

There exist plenty of applications that may need to 
posteriorly estimate the variance factors of different 
types of measurements or independent measurement 
groups. A typical example is the relative GNSS 
kinematic positioning of a moving rover with respect to 
a stationary receiver at a base station. Specifically 

consider using GPS receivers with three independent 
measurement types: L1 C/A, L1 carrier phases and L2 
carrier phases. So, one may need to estimate three 
variance factors corresponding to the double-
differenced (DD) L1 C/A, L1 carrier phases and L2 
carrier phases. Due to the double differencing process, 
the DD measurements are correlated within each type 
[Gopaul et al, 2010; Wang et al 2010]. With the 

progress of the GPS modernization program, there 
could be six uncorrelated types of GPS measurements 
with the range and phase measurements from L1, L2 
and L5. Another example is that an IMU could acquire 
a 3 dimensional specific force vector and a 3 
dimensional angular rate vector so that two variance 
factors may be introduced in their variance component 
estimation for each, respectively [Wang et al, 2021], 

even more variance factors for an IMU array [Brunson 
et al, 2024].  

Without loss of generality, one no more needs to 
distinguish between the process noise vector and 
measurement noise vector in this subsection. Instead, 
the variance component (or factor) estimation is 
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focused on the grouped measurements no matter there 

exists or does not exist any correlation within a group, 
but no correlation exists between measurement groups.  

Let ))(,(~)( koNk sss Dv at instant 
kt , where  )(ksv  

is the residual vector of the s-th group (the partial tone 
from set) of the measurement vector with its a priori 

covariance matrix )(kssD . Similar to (2.27), (2.29) and 

(2.31), its )(krs
 stand for the subtotal redundancy 

contribution of the s-th group of the measurements. 
Correspondingly, the variance factor for the s-th group 
is estimated as follows: 
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It must be pointed out that the degrees of freedom 
are the total redundancy contribution of all the 
measurements, instead of simply the number of the 
measurements in the s-th group, which is generally 

smaller than the latter. Clearly, such variance factors 
cannot be estimated directly through using the system 
innovation series. 

In general, the a posteriori estimate of the a priori 
covariance matrix )(kssD is given as follows:  

)(ˆ)(ˆ
/ kk sssss DD

2

0              (3.19) 

for the s-th group of the measurements inclusive of the 

specific groups of )(kw  in (2.1)and/or )(kz in (2.2), 

wherein 2

0 s/̂  is a chosen variance factor among (3.16) 

– (3.18). 

3.2.5 Individual Variance Factors or Components 
for the uncorrelated process noise factors and 
measurements 

In comparison with the scenario as described in 

Section 3.2.4, one can further estimate the variance 
components for each of the uncorrelated process noise 
factors and/or uncorrelated measurement types, which 
can be completed either through estimating their 
variance factors or variance components at a level 
further in detail. 

Commonly, the individual components in a process 
noise vector are assumed to be a priori independent of 

each other, i.e., the covariance matrix )(kQ in (2.5) is 

diagonal in practice unless otherwise stated. Quite the 
same with the measurements from different sensors in a 
multi-sensor kinematic positioning and navigation 

system, the different measurements at a time are 
presumed to be uncorrelated to each other, for example, 
the measurements from the three gyros and three 
accelerometers in an IMU. So, they can be treated as 
six independent measurements. Another example is the 
standard GPS single point positioning using the L1 C/A 
pseudoranges, where one can estimate the variance 
components associated with each satellite [Wang, et al, 

2009; Gopaul et al, 2010].  

Under the assumption that )(kQ in (2.5) and )(kR in 

(2.6) (k=1, 2, …, i, …, N) are diagonal or partially 
diagonal, the individual variance factors for their 

uncorrelated components can posteriorly be estimated 
as follows: 
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for )(kQ  after (2.19) and (2.28), and 
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for )(kR  after (2.21) and (2.29), which could be used 

to scale their a priori variances.  

In case that )(...)()( NQQQQ  21  and 

)(...)()( NRRRR  21 , i.e., constant in addition 

to diagonal, the individual variance components for 
their uncorrelated components can posteriorly be 
estimated as follows:  
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for )(kQ  and  
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for )(kR , which could be used to update their a priori 

variances.  

It is worth mentioning that with the VCE of the 
independent individual components in the process noise 
vector or in the measurement vector, some of the 
corresponding redundancy indexes may relatively small,  
especially with some of the process noise factors 
[Wang, et al, 2009]. This could result in verging on 
divergence of the estimated variance while its 
redundancy contribution becomes increasingly small in 

case the specific variance becomes very small (close to 
a high leverage random variable as in linear regression). 
To avoid a potential divergence of this type of variance 
components, one can simply exclude it from the VCE 
process by fixing its variance value (or reasonably 
adapt its a priori value). 

3.3 General Tactics for how to proceed with the A 
Posteriori Precision Evaluation 

Frankly, one can utilize the proposed four levels of 
a posteriori precision evaluation in many conceivable 
combinations in practice, particularly in post 
processing. On one hand, one needs to take all factors 
into consideration for achieving their best usage. On 
the other hand, the understanding and experience of a 
specific analyst do play important role. The authors 
hope that readers may be able to convert our following 

general view into actionable goals in their practice. 

The usage of global variance of unit weight in (3.5) 

and (3.6) had better first be considered in order to fit 
your system states to the overall quality of the 
measurements. The regional and local variances of unit 
weight may provide better information about any 
regional and local characteristics, anomalies or noise 
homogeneities for conducting outlier detection or being 
concerned with the solution robustness and/or 
adaptivity. 

Often, a user may not know the quantitative 
characteristic of the process noises as good as the ones 
of the measurement noises because one can easily refer 
to the technical specifications associated with the 
sensors for their reference (or nominal) values. In this 
case, one may hardly expect that the a priori covariance 
matrix Q  for the process noise vector and the a priori 

covariance matrix R  for the measurement noise vector 
at an epoch may share the same variance factor of unit 
weight, i.e., the reference variance. Hence, the a 
posteriori estimation of the separate variance factors for 
Q and R in Section 3.2.5 should be considered because 

the whole system through its integration of the 
measurements can adjust the absolute noise levels for 
both of the process and measurement noises together 
simultaneously. 

In general, different sensors offer different types of 
measurements. Sometime, a single sensor may also 
offer multiple types of measurements. For example, an 

IMU offers a three dimensional specific force vector 
and a three dimensional angular rate vector at an 
observation epoch, which can be considered as two 
independent groups of measurements. So, one can 
posteriorly estimate their own variance factors after 
Section 3.2.4. Because the three components in either 
the specific force vector or the angular rate vector are 
also uncorrelated, one can surely consider having six 
independent groups of measurements and performing 

variance component estimation for each of them (six 
variance components in total) after Section 3.2.5. 
Moreover, let take a look into GPS relative kinematic 
positioning under the consideration of three 
independent types (or groups) of the measurements, i.e., 
L1 C/A (pseudoranges) and L1/L2 carrier phases 
associated with each available satellite. Although the 
raw measurements are even uncorrelated in each group 

from time to time, the double differenced (DD) 
measurements become correlated within each group. 
However, the DD GPS measurements are still 
independent to each other between groups. In this case, 
three variance factors can be posteriorly estimated for 
each group, but an estimation of any variance 
components for specific groups of satellites, for 
instance, per elevation angles or per individual 

satellites becomes meaningless. Besides, a unique type 
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of a posteriori variance based robust and adaptive 

Kalman filter was once proposed in kinematic 
positioning by Wang et al [2010]. 

While the schemes in Sections 3.2.2 and 3.2.3 are 
undertaken for practically improving of the a priori 
stochastic models in terms of systems, the schemes 
described in Sections 3.2.4 and 3.2.5 possess high 
potential for labeling or confirming the variances of 
specific measurement types, especially in the so-called 

online sensor calibration, especially with using high 
quality of carefully planned GNSS observations for 
calibrating other sensors. One can definitely benefit all 
of the proposed schemes for the a posteriori precision 
evaluation in post processing. But at the same time, the 
authors are nor suggesting that no benefit may be 
gained from them in real time. The outlined local and 
regional measures may be taken in real time mode 

correspondingly.    

Ultimately, it is worth noting that the a posteriori 
precision estimation is to improve the a priori 
stochastic model based on the being processed real data 
instead of guaranteeing a higher precision or accuracy.  

In addition, the authors feel obliged to further 
comment on the equations for variance factors or 
components in Section 3.2.3 – Section 3.2.5. They are 

simplified from the rigorous results after Helmert 
method [Főrstner, 1979; Cui et al, 1993; Li and Yuan, 
2002; Wang et al, 2009]. Their approximatability relies 
on the large number of redundant measurements, i.e., 
the total redundancy contribution of a system [Főrstner, 
1979; Li and Yuan, 2002; etc.]. A typical successful 
application is its usage in aerial photogrammetry 
[Főrstner, 1979; Li and Yuan, 2002; etc.]. Wang et al 

[2009] specifically studied its approximatability vs. the 
rigorous method after Helmert in GNSS kinematic 
positioning and showed its choiceness in practice. 
Indeed, there could be sufficient number of 
measurements from a multi-sensor integrated kinematic 
positioning and navigation mission. For instance, a 
relative GNSS positioning mission can have 5400 
measurements for 30 minutes at 1Hz data rate from 8 

satellites using a rover relative to a base station. In 
GNSS/IMU integrated direct georeferencing system, 
one can even have 1,080,000 IMU measurements at 
100 Hz data rate for 30 minutes. In comparison with 
our traditional geodetic control network, even in 
photogrammetry using Least squares adjustment, an 
appropriate utilization of such large number of the 
(redundant) measurements and their residuals can 

comfortably result in the more reliable variance 
component estimation. With using such large number 
of the measurements, especially the sufficiently large 
number of the redundant measurements, one can well 
characterize the process and measurement noises. 

4. Working Examples and Discussions 

This section illustrates the utility of a posteriori 

precision evaluation in Kalman filtering using a road 
test dataset. 

4.1 Road Dataset 

The data was acquired using our in-house developed 
kinematic positioning and navigation system consisting 
of a Vectornav VN-100 IMU operating at 100 Hz and a 
high-rate NovAtel OEM6 receiver mounted on a land 
vehicle with a second NovAtel OEM6 receiver acting 

as a base station at a fixed position. 
The vehicle was driven in circles about a residential 

court for 5 minutes after a stationary start for the first 5 
minutes, then stayed stationary for5 more minutes, and 
was further driven in kinematic for approximately 30 
minutes. The top view of the trajectory is shown in 
Figure 4.1, while its velocity and acceleration profiles 
are shown in Figures 4.2 and 4.3, respectively. 

 
Figure 4.1: The top view of the trajectory (the coordinates 

are presented as local geodetic coordinates 

with respect to the starting location) 

 
Figure 4.2: The Velocity profile of the kinematic trajectory 
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Figure 4.3: The acceleration profile of the kinematic 

trajectory 

The attitude profile of the vehicle is shown in 
Figure 4.4, and its attitude rate-of-change is shown in 
Figure 4.5. 

 
Figure 4.4: The attitude profile of the kinematic trajectory 

 
Figure 4.5: The attitude change profile of the kinematic 

trajectory 

The a priori observation standard errors used in 

Kalman filtering are listed in Table 4.1. 

Table 4.1: The a priori observation standard errors 
used in data processing 

Observation Type A Priori Standard Error 

L1 C/A 50 cm 

L1 Carrier Phase 5 mm 

L2 Carrier Phase 5 mm 

Accelerometer 10 cm/s2 

Gyroscope 40’/s 

The a priori standard errors of the process noises 
used in this example are summarized in Table. 

Table 4.2: The a priori standard errors of the process 

noises used in data processing 

Process Noise 

Components 

A Priori Standard Error 

Jerks 10 m/s3 

The 2nd order of 
Attitude Derivatives 

1°/s2 

4.2 Overview of the Kalman filter 

The data processing of this working example uses 
an identical approach to the Roll-Pitch-Heading model 
to define the Kalman Filter as in [Brunson and Wang, 
2023]. Since the focus here is on the posteriori 
precision evaluation, special attention is paid to the 
definition of the R and Q matrices. 

As in [Brunson and Wang, 2023], the state vector 
includes the linear position, velocity and acceleration 
vectors, as well as the roll, pitch and heading and their 
associated time-derivatives. The system model is 
constructed using a constant acceleration and constant 
attitude first-order time-derivative model. The state 
vector also includes any float estimates of the double-

differenced GNSS ambiguity estimates, as well as the 
IMU accelerometer/gyroscope biases and scale factor 
errors. The system model for these additional state 
vector elements is constructed using a random-constant 
model. 

The Kalman Filter used here is constructed after the 
Generic Multisensor Integration Strategy (GMIS) as in 
[Brunson and Wang, 2023]. One of the key differences 

between the GMIS and the Traditional Multisensor 
Integration Strategy (TMIS) is that the GMIS models 
all IMU outputs as observations in the Kalman Filter. 
This allows for the direct inclusion of IMU biases and 
scale factor errors in the state vector, and additionally 
allows for VCE to characterize the performance of the 
IMU in GNSS/IMU integrated systems. 
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Given the definition of the state vector, the process 

noise vector consists of the jerk (i.e. third-order 
position time-derivative) and the attitude second-order 
time-derivative vectors. The process noise vector also 
includes those factors relating to the shaping filters for 
estimating the IMU systematic errors and GNSS float 
ambiguity estimates, although they are not the focus of 
this analysis. The process noise vector is partitioned as 
follows 

   [  
   

   
     

 ]
 
                         (4.1) 

where    is the system jerk;    is the vector of second 

time-derivatives of the attitude parameters;    
describes the first-order time derivatives of the GNSS 
float ambiguity estimates; and      describes the first-
order time derivatives of the gyroscope/accelerometer 
bias and scale factor error estimates. 

The corresponding covariance matrix for the 

process noise vector is defined as 

  

[
 
 
 
 
      

      

      

        ]
 
 
 
 

                      (4.2) 

where the individual diagonal elements of     and 

    are defined after Table 4.2. Meanwhile, the 

diagonal elements of     and       are quite small, 

since these quantities are not expected to drift quickly. 

The observation vector at epoch   consist of three 
gyroscope observations, three accelerometer 
observations, the double differenced L1 C/A, and L1 
and L2 Carrier Phase observations. The corresponding 

covariance matrix for the overall observation vector 
may therefore be defined to be 

  

[
 
 
 
 
 
      

      
          

           
           ]

 
 
 
 
 

    (4.3) 

where    and    are 3x3 diagonal matrices describing 

the accuracy of the gyroscope and accelerometer 
outputs, respectively,        models the covariance 

matrix of the double-differenced L1 C/A observations, 
and         and         model the covariance matrices 

of the L1 and L2 Carrier Phase observations, 
respectively. 

It is important to bear in mind that    and    are 

both diagonal matrices, since each 
gyroscope/accelerometer axis is assumed to be 
statistically independent.       ,         and         

are fully populated, since all double-differenced GPS 
observations become correlated due to the use of a base 

satellite in the double differencing process at each 

epoch. Practically, this means that separate variance 
components could be used to characterize each axis of 
an IMU in a very straightforward manner, but that 
doing this sort of analysis for individual double-
differenced GPS observations is a much more involved 
process. 

4.3 The A Posteriori Evaluation of Observation and 

Process Noise Covariance Matrices 

The appropriate tuning of the observation and 
process noise covariance matrices is a critical task in 
any kinematic positioning application. This is often 
initially determined using instrument specifications, but 
there are several factors that are generally unaccounted 
for in these a priori accuracy estimates: 

i. Instrument accuracies are typically evaluated in a 
controlled laboratory environment, and this level of 

accuracy is rarely achieved in a complex real-world 
environment. 

ii. There are many environmental effects that can 
significantly degrade the quality of signals from a 
particular positioning sensor. Examples include 
multipath errors in GNSS observations and the 
effects of vibration on IMU observations. 

Properly accounting for these factors is complicated 

and in practice, there can be a lot of guesswork 
involved in this process. The a posteriori precision 
evaluation can provide valuable tools for refining the 
observation and process noise covariance matrix in a 
post-processing environment. 

The standard error factors for each of the 
observation types and process noise components were 
evaluated over the duration of the kinematic dataset and 

used to iteratively scale the a priori standard errors. 
Once the standard error factors all converged to 
approximately 1, the covariance matrices were 
considered well-tuned within the system. Here, it took 
5 iterations for the tuning of the observation and 
process noise covariance matrices to converge, and 
Figures 4.6 and 4.7 illustrate this process. 

Figure 4.6: The standard error factors estimated for each 

observation type as part of the iterative tuning of the 
observation covariance matrix R. 

After the final tuning of the observation and process 
noise covariance matrices, the estimated a posteriori 
standard errors are summarized in Table for the 
observations and Table for the process noise. 
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Figure 4.7: The a posteriori standard error factors 

for each type of the process noises as 
part of the iterative tuning of the 
process noise covariance matrix. 

Table 4.3: The a posteriori observation standard errors. 

Observation Type A Posteriori Standard 
Error 

L1 C/A 74 cm 

L1 Carrier Phase 10 mm 

L2 Carrier Phase 11 mm 

Accelerometer 11 cm/s2 

Gyroscope 45 ‘/s 

Table 4.4: The a posteriori process noise standard 

errors. 

Process Noise 

Components 

A Posteriori Standard 

Error 

Jerk 14 m/s3 

The 2nd order of 

Attitude Derivatives 
1.1 °/s2 

4.4 Time-Varying Standard Error Factor 

Estimates 

Section 4.2 focuses on using the estimated 
observation and process noise residuals to determine 
overall (or global) standard error factors. This section 
instead focuses on time-varying estimates of the 
standard error factors for different observation types. 

It is possible to estimate epoch-wise (local) standard 
error factors for the observation and process noise 

vectors using their residuals and redundancy 
contributions as defined in Section 2.3.2. It is necessary 
to understand the limitations of doing this, since 
redundancy contributions may be very small for a given 
epoch, particularly for the process noise vector (Figure 
4.8). To illustrate this, we present the redundancy 
contributions of the observation, process noise, and 
system state vectors in Figure 4.8. It is clear that the 

observation vector makes the most dominant 
contribution to the system’s overall redundancy. Since 
the redundancy contribution of the process noise vector 
to the system is relatively small for a given epoch, the 
epoch-wise estimates of the process noise standard 
error factors will be unreliable. 

 

Figure 4.8: The epoch-wise redundancy contributions 
of the observation, process noise, and 
predicted system state vectors over the 

kinematic dataset (Note: the sum of all 
three redundancy contributions is equal to 
the number of observations plus the 
number of state constraints) 

To counter this issue, the standard error factors may 
be estimated using a moving window (regional) to 
reduce the time-resolution of the standard error factor 
estimates, but significantly improve their reliability. 

See Figure for an illustration of the effects of different 
window sizes on the estimated standard error factors 
for the overall observation vector. Figure shows the 
effects of different window sizes on the standard error 
factors for the process noise vector. 
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Figure 4.9: An illustration of the effects of different 

window sizes on the observation standard 
error factors. 

Doubtless, the standard error factors may be 
estimated for the different observation groups: L1 C/A 
(Figure 4.11), L1 Carrier Phase (Figure 4.12), L2 
Carrier Phase (Figure 4.13), gyroscopes (Figure 4.14), 
and accelerometers (Figure 4.15). 

 

Figure 4.10: An illustration of the effects of different 

window sizes on the process noise 
standard error factors. 

 

Figure 4.11: The time-varying standard error factor 
estimates for the L1 C/A observations. 

 

Figure 4.12: The time-varying standard error factor 

estimates for the L1 Carrier Phase 
observations. 

Moreover, the separate standard error factors may 
be estimated for each of the three gyroscopes and 
accelerometers as long as they are uncorrelated with 
one another (Figure and Figure, respectively). 

 

 

Figure 4.13: The time-varying standard error factor 

estimates for the L2 Carrier Phase 
observations. 

 

Figure 4.14: The time-varying standard error factor 
estimates for the Gyroscope observations. 
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Figure 4.15: Time-varying standard error factor 

estimates for the Accelerometer 
observations. 

 
Figure 4.16: The time-varying standard error factor 

estimates for the individual components 
of the Gyroscope observations. 

 
Figure 4.17: The time-varying standard error factor 

estimates for the individual components 
of the Accelerometer observations. 

The estimated standard error factors for the process 

noise jerk and angular second derivative components 
are shown in Figure 4.18 and Figure 4.19, respectively. 

 
Figure 4.18: The time-varying standard error factor 

estimates for the process noise elements 
relating to the system jerk 

 

Figure 4.19: The time-varying standard error factor 
estimates for the process noise elements 
relating to the system attitude second 

derivatives 

To illustrate the effects of applying the overall 
standard error factor to the estimated state covariance 
matrix, see the a priori and a posteriori standard 
deviation plots for the position (Figure 4.20) and 
attitude (Figure 4.21). 

4.5 On Variance Component Convergence for 
Different A Priori Standard Errors 

As long as the a priori estimates of the 
observation/process noise standard errors are relatively 
close to their a posteriori estimates, they should 
generally converge to the same values. To illustrate this, 
the same road test dataset was processed while over-
estimating the observation standard errors. The a priori 
observation standard errors used are summarized in 
Table 4.5. 
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Figure 4.20: The time-varying standard deviations of 
the East, North, Up local geodetic 
coordinates of the system 

 

Figure 4.21: The time-varying standard deviations of 
the roll, pitch, and heading attitude 
parameters. 

After 5 iterations of tuning the standard errors using 
variance component estimation, the estimated a 
posteriori observation standard errors are summarized 

in Table 4.6, along with their percentage difference 
from the values estimated in Table 4.3. 

Table 4.5: The a priori observation standard errors 
used in data processing. 

Observation Type A Priori Standard Error 

L1 C/A 100 cm 

L1 Carrier Phase 15 mm 

L2 Carrier Phase 15 mm 

Accelerometer 15 cm/s2 

Gyroscope 60’/s 

Table 4.6 clearly illustrates that the a posteriori 
standard errors of the observations are primarily 

influenced by how well the collected data fits the 
observation models, and are uninfluenced by their 

initial a priori estimates as long as they have been 

well approximated based on user’s best knowledge of 
the being system and field conditions. This behaviour 
makes VCE very well-suited to adaptive filtering 
techniques. 

Table 4.6: The a posteriori standard errors estimated 
for the initial values summarized in 
Table 4.5, and a comparison to the a 
posteriori standard errors described in 

Table 4.3. 

Observation 
Type 

A Posteriori 
Standard Error 

Difference 
from Tab. 4.3 

[%] 

L1 C/A 76 cm 2.7 

L1 Carrier Phase 11 mm 9.1 

L2 Carrier Phase 11 mm 0.0 

Accelerometer 12 cm/s2 9.1 

Gyroscope 44 ‘/s 2.2 

5. Conclusions and Remarks 

This paper attempts to standardize the a posteriori 
precision evaluation process in discrete Kalman 
Filtering based on the standard Kalman filter described 

in Section 2, drawing from similar tasks in Least-
Squares analysis. This enables the following a 
posteriori precision analysis: 

1). Estimation of the redundancy of a Kalman Filter, 
as well as the redundancy contributions of the 
process noise, observation, and predicted state 
vectors. 

2). Estimation of variance factors for each of the 
process noise, observation, and predicted state 

vectors, along with any independent partitioned 
elements of these vectors. 

3). Evaluation of global variance factors that describe 
the overall performance of the Kalman Filter over 
an entire dataset. 

4). Evaluation of local variance factors that describe 
the time-varying performance of the Kalman Filter 
over the course of a dataset. This includes 

windowed analysis to improve the reliability of 
variance factor estimates. 

Each of them has been explored in the given 
working example based on a road test dataset.  

It is worth noting that such a posteriori precision 
evaluation blends the a priori stochastic models and the 
quality of the measurements into a unity – as such, the 
delivered precision and accuracy of the solution in 

discrete Kalman filtering may well be related with the 
being processed data. This process does not necessarily 
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“improve” the precision and/or accuracy of the solution.  

Rather, our understanding of the Kalman Filtering 
system improves as a result of this proposed a 
posteriori precision evaluation, and this in turn 
improves the reliability of our results. 
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