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Abstract: To further enhance the accuracy of 

atmospheric weighted mean temperature (Tm) 

models in ground-based Global Navigation Satellite 

System (GNSS) retrieval of precipitable water vapor 

(PWV), we propose and develop a regionally 

adaptive Multi-Hidden-Layer neural network for Tm, 

hereafter referred to as MHL_Tm. A multiparameter 

cooperative Tm-modeling framework has been 

established using radiosonde observations from 65 

launch sites across China during 2014–2018. We 

analyzed the nonlinear coupling between surface 

temperature (Ts), surface water-vapor pressure (e), 

latitude (Lat), elevation (H), and the temporal factor 

day of year (DOY) with radiosonde-derived integral 

Tm values. Radiosonde data from 2019 served as an 

independent reference to evaluate MHL_Tm’s 

performance, which was then compared against the 

Bevis, GPT3, and Elastic Net models. Experimental 

results showed that the annual mean bias of 

MHL_Tm was –0.61 K, representing reductions of 

30 % and 58 % relative to Bevis and GPT3, 

respectively, and slightly higher than Elastic Net (–

0.11 K). The annual mean RMSE of MHL_Tm was 

2.77 K, corresponding to improvements of 35 %, 

62 %, and 18 % over Bevis, GPT3, and Elastic Net, 

respectively. Across different latitudinal and 

altitudinal zones in China, MHL_Tm exhibited 

superior accuracy and stability compared to Bevis, 

GPT3, and Elastic Net, demonstrating excellent 

regional applicability. 

Keywords: MHL, atmospheric weighted mean 

temperature, machine learning, precipitable water 

vapor, GNSS. 

1 Introduction 

Precipitable water vapor (PWV) is a key physical 

parameter representing the total atmospheric 

water-vapor content. Its accurate monitoring is 

essential for deepening our understanding of climate‐

change mechanisms and improving early warning 

capabilities for extreme weather events [Rocken et 

al., 1997; Shi et al., 2023; Li et al., 2024; Ma et al., 

2025; Jiang et al., 2025]. Variations in PWV are 

closely linked to cloud formation, precipitation 

processes, and extreme weather, making PWV an 

indispensable dataset for weather forecasting, 

climate‐change studies, and hydrological‐cycle 

analysis [Jiang et al., 2024; Jiang et al., 2024; Jiang et 

al., 2023]. Although the traditional observation 

techniques, such as radiosondes, sun photometers, 

water‐vapor radiometers, and satellite remote 

sensing, can provide high‐accuracy or large‐scale 

PWV information, they are often constrained by 

temporal resolution, cost, and environmental 

conditions, and thus cannot satisfy the requirements 

for real‐time, continuous, high‐spatiotemporal‐

resolution monitoring [Kishore et al., 2011; Yao et 

al., 2022; Zhang et al., 2018]. Beyond its 

conventional applications in navigation, intelligent 

traffic management, and emergency rescue, a Global 
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Navigation Satellite System (GNSS) offers a unique 

advantage in that its microwave signals penetrate the 

atmosphere, rendering GNSS a low‐cost, all‐weather, 

high‐spatiotemporal‐resolution tool for atmospheric 

sensing [Ji & Shi, 2014; Sobrino & Romaguera, 

2008; Vaquero-Martinez et al., 2008; Bevis et al., 

1992]. Consequently, GNSS has become an 

indispensable technological support for meteorology 

and climatology research [Hagemann et al., 2003; 

Zhang et al., 2019; Liu et al., 2001]. In the GNSS‐

based retrieval of PWV, the zenith wet delay (ZWD) 

must be converted to PWV via a crucial water‐vapor 

conversion coefficient (Π), for which the atmospheric 

weighted mean temperature (Tm) is the sole 

determining variable [Liu et al., 2001]. Therefore, 

considerable research has been devoted to developing 

and refining empirical and data‐driven models for 

Tm. 

Methods for calculating Tm can be divided into 

two main categories: models based on non-in situ 

meteorological parameters and models based on 

in-situ observations. The non-in situ models use 

atmospheric reanalysis data and therefore do not 

depend on local measurements. Böhm et al. [2007] 

first developed the Global Pressure and Temperature 

(GPT) model using ECMWF’s ERA-40 reanalysis, 

employing ninth-order spherical harmonics to 

generate gridded surface temperature and pressure 

fields worldwide, thus establishing the 

meteorological foundation for GNSS water-vapor 

retrieval. Subsequent versions have further improved 

performance: GPT2w incorporates 37 

wet-temperature layers from ERA-Interim and adds 

annual and semiannual harmonic terms to refine the 

lapse-rate calculation, reducing errors by 23 % in 

mid- to high-latitude and high-elevation regions (e.g., 

below 3000 m in China). Landskron et al. [2018] then 

introduced the GPT3 model, which integrates 

atmospheric-gradient information traced from 

numerical weather models and uses a 0.5°×0.5° grid 

to reduce Tm estimation errors to 1.47 K, with the 

successful validation over polar sea-ice regions. At 

the same time, the observation-based Tm models 

have trended toward regionalization and intelligent 

approaches. Bevis et al. [1992] established the classic 

linear model that quantifies the relationship between 

surface temperature (Ts) and Tm. But this model 

exhibited significant limitations in complex terrain. 

The ET-TM model was proposed for China’s 

complex climate regimes [Liu et al., 2001]. Based on 

data from 73 radiosonde stations, the region‐specific 

Tm models were derived to incorporate surface 

temperature and saturation vapor pressure. The 

ET-TM model outperforms the Bevis and GPT-3 

models overall and effectively mitigates the 

influences of latitude and elevation on Tm, making it 

well suited for PWV retrieval in China. Yao et al. 

[2014] systematically explored the global relationship 

between Tm and Ts and developed a 

latitude-dependent global Tm model. With the 

maturation of machine-learning methods, many 

researchers have widely applied these algorithms to 

modeling the atmospheric weighted mean 

temperature (Tm), owing to their strong function-

fitting capabilities. Ding [2018] was the first to 

attempt a global Tm model using a backpropagation 

(BP) neural network and achieved the higher 

accuracy than the GPT2w model. Sun et al. [2021] 

used random forest (RF), generalized regression 

neural network (GRNN), and BP neural network 

(BPNN), respectively, to build Tm models for China 

that rely on measured meteorological inputs; their 

results showed that all three machine-learning 

methods outperformed the GPT3 model. In brief, 

constructing Tm models using machine-learning 

approaches is feasible.  

Given that Tm is the cornerstone parameter in 

GNSS meteorology and reliable PWV retrieval 

demands high accurate Tm, traditional methods (e.g., 

the Bevis formula) face a challenge of their 

underlying linear assumptions and limited capacity to 

capture nonlinear effects in complex terrain. This 

motivates the introduction of deep‐learning 

algorithms to elucidate the intricate relationships 

among meteorological variables and Tm. 

2 Study Area and Data 

2.1 Study area 

The study area encompasses mainland China, 
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spanning latitudes 4° N to 53° N and longitudes 70° 

E to 135° E. It exhibits a pronounced east–west 

heterogeneity: from the low‐lying southeastern 

coastal plains to the high‐altitude northwestern 

interior plateaus, forming a multi-tiered 

geomorphological staircase. Climatically, the region 

is influenced by both monsoonal and continental 

systems, with the southeast being humid and rainy 

while the northwest remains arid and dry, and with 

the marked diurnal and seasonal temperature 

contrasts. The complex geo-climatic patterns in this 

region limit the applicability of global meteorological 

models (e.g., the GPT series and ERA5), particularly 

introducing systematic biases in estimates of 

moisture-related parameters such as Tm. Hence, the 

development of more appropriate Tm models is 

necessary. Fig. 1 shows the locations of 65 

radiosonde stations in the study area. 

 
Fig. 1 Radiosonde Station Distribution Map 

2.2 Data Source 

A dataset comprising radiosonde measurements 

from 65 stations within the study area was selected, 

covering the five‐year period from 2014 to 2018, 

with 282,143 soundings in total. Data from 2019 

were reserved for the accuracy assessment. The raw 

observations (their station latitude and longitude, 

temperature, dew‐point temperature, and relative 

humidity) were downloaded from the University of 

Wyoming Upper‐Air Sounding Archive 

(http://weather.uwyo.edu/upperair/sounding.html). 

The atmospheric weighted mean temperature was 

then computed through numerical integration. Tm as 

the temperature integral ratio weighted by water 

vapor pressure is given as follows: 
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where ie and iT  are, respectively, the mean water-

vapor pressure and mean temperature of the i th 

atmospheric layer, and ih  is the thickness of the 

layer. The vapor pressure e  at each level can be 

derived from the dew-point temperature dT  (in °C) 

provided by the radiosonde data [Kraus, 2004]: 
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The weighted‐mean based on radiosonde profiles in 

(2) is widely recognized as the most accurate method 

for computing Tm, and adopted in this study. 

3  MHL_Tm Model Construction in China 

To further improve the accuracy of the Tm 

model, a regionalized Tm model (MHL_Tm) 

incorporating a multi-hidden-layer neural network 

algorithm was developed. The traditional Tm models 

often suffer from limited local adaptability when 

applied to China’s complex and highly variable 

climatic and topographic conditions. In contrast, the 

MHL algorithm, with its superior nonlinear fitting 

capability and robustness, provides an ideal solution 

for handling multidimensional and high-variable 

relationships. In comparison with the traditional 

models as well as other machine learning approaches, 

this study comprehensively evaluates the 

performance differences and applicable scenarios of 

various methods in term of predicting Tm. This 

section specifically describes the model selection: 
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3.1 Classical Models 

The Bevis and GPT3 models were chosen as 

reference benchmarks because they have been widely 

used in the GNSS/atmospheric literature and serve as 

well-established, reproducible baselines for Tm 

estimation. 

(1) Bevis Formula 

Bevis’s empirical formula serves as a 

representative traditional model, estimating Tm 

through a linear regression relationship with surface 

temperature (Ts) and is widely used in GNSS 

meteorology. Its principal advantages lie in its clear 

physical interpretation and low computational 

complexity on account of no complex parameter 

tuning, making it a standardized empirical tool in the 

early stage of the GNSS water-vapor retrieval. It 

provides a performance benchmark for subsequent 

analysis, facilitating verification of whether the 

data-driven models could achieve a significant 

improvement in the predictive accuracy [Bevis et al., 

1992]: 

0.72 70.2m sT T    (4) 

where Tm and Ts denote the weighted atmospheric 

mean temperature and surface temperature, 

respectively, in K. 

(2) GPT3 Grid Model 

Based on global meteorological reanalysis data, 

GPT3 grid model employs spatiotemporal 

interpolation to extend the discrete station 

observations onto a regular grid, and applies 

pressure‐level height corrections and vertical‐layer 

weighting to spatially extrapolate Tm at different 

altitudes. Its core advantage lies in overcoming the 

limitations of observational station distribution, 

providing reliable prior constraints for unobserved 

regions. Studies have indicated that when computing 

Tm over China, its results at a spatial resolution of 

1° × 1° outperformed those at 5° × 5° [Cai, et al., 

2022]. To highlight the superiority of the MHL_Tm 

model, the GPT3‐derived Tm results at 1° × 1° 

resolution was used for model performance 

comparison: 
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T A Acos B sin A cos B sin

   
                         (5) 

where DOY  stands for the day of year (unit: day), 0A  

is the annual mean Tm, 1A  and 1B  are the annual‐
cycle coefficients, 2A  and 2B are the semiannual‐
cycle coefficients, and 0A , 1A , 1B , 2A , 2B  are in K 

[Landskron et al., 2018]. 

3.2 Machine Learning Models 

(1) Elastic Net 

Elastic Net regression combines L₁ and L₂ 

regularization to retain the feature‐selection 

capability while mitigating multicollinearity (e.g., the 

seasonal correlation between Ts and DOY), wherein 

L1 regularization adds a penalty equal to the sum of 

the absolute values of the model parameters to the 

loss function, whereas L2 regularization adds a 

penalty equal to the sum of the squared model 

parameters in model training. If the linear multi‐

feature model significantly outperforms the Bevis 

formula, this would indicate that incorporating 

additional predictors could enhance the predictive 

skill. Moreover, if it has limited performance, 

nonlinear methods may be employed to capture more 

complex dependencies. 

Let the data n pX R   denote the design matrix (n : 

the sample size, p: the number of predictors)， ny R  

(the response vector)，and pR   (the coefficient 

vector). The objective of the elastic net is to 

minimize the following expression: 
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is the L2 penalty. The tuning parameters   (the 

regularization strength) and mixing parameter [0,1]  

determines the relative weight of the L1 and L2 

penalties (degenerating to Lasso when 1  , and to 

Ridge when 0  ) [Zou and Hastie, 2005]. 

(2) Multi-Hidden-Layer Neural Network (MHL) 
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A multi‐hidden‐layer neural network provides a 

fundamental deep‐learning framework with strong 

theoretical capacity to approximate complex 

functional relationships, enabling exploration of 

deep‐model potential in Tm prediction. However, due 

to the large parameter space and network complexity, 

sufficient model training can be time‐consuming and 

sensitive to hyperparameter settings with a risk of 

becoming trapped in local minima. Consequently, an 

extensive hyperparameter tuning and a model 

validation are required to ensure robustness and 

generalization. 

3.3 Construction of the MHL_Tm Model 

3.3.1 Data Processing 

To the raw data, a data‐cleaning pipeline was 

systematically applied, including missing‐value 

handling, outlier detection and removal, and data 

normalization. Given the large sample size, missing 

values were removed outright. For outlier detection, a 

multivariate approach based on the residuals of a 

Ridge regression model was used, classifying 

samples with |z-score| > 5 as outliers. Employing a 

|z-score| threshold of 5 is reasonable when the dataset 

is sufficiently large: a more lenient threshold ensures 

that only the most extreme samples are excluded, 

thereby preserving the original data distribution while 

removing anomalies that could disproportionately 

affect the model. Afterwards, the data were 

normalized using Z-score normalization: 

 ˆ/)ˆ(  xz  (7) 

where x  is the value of a given sample associated 

with a particular feature; ̂ is its mean value 

computed from the dataset; ̂  is its standard 

deviation  computed from the dataset; z is the 

standardized value (Z-score). So, all features have 

their samples standardized with their means of 0 and 

standard deviations of unity, preserving their original 

distribution characteristics. The standardization 

facilitates the model's ability to capture nonlinear 

relationships. 

3.3.2 Feature Selection 

To identify the model inputs, the correlations 

between Tm and various meteorological parameters 

were first examined at the 65 radiosonde stations 

from 2014 to 2018. According to both statistical 

significance and physical rationale, surface 

temperature (Tm), water‐vapor pressure (e), latitude 

(Lat), elevation (H), and day of year (DOY) were 

ultimately selected as the predictor variables for Tm. 

Raw data

Remove missing 
values

Train a Ridge 
regression model

Remove 
outliers

Calculate 
prediction residuals

|Z-score|
Standardization

Standardization
|Z-score|>5?

No,retain 
samples

Yes,remove 
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Fig. 2 Data Preprocessing Structure Diagram 

 

Fig. 3 Correlation Coefficient Plots of Tm with 

Various Features 

Specifically, Ts (r = 0.9159) and e (r = 0.8162) 

exhibited a strong positive correlation with Tm, 

reflecting the direct driving roles of the surface 

thermal radiation and atmospheric moisture in 

near-surface thermodynamic processes, in accordance 
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with thermodynamic energy-transfer theory. Lat 

(r = –0.486) and H (r = –0.3745) show their negative 

correlations, revealing geographic spatial 

differentiation whereby Tm decreases significantly at 

high latitudes and elevations due to the reduced solar 

insolation and lower atmospheric pressure, and 

consistent with the vertical climatic zonation. 

Although DOY (r = 0.1575) has a weak linear 

correlation with Tm, previous studies [Sun et al., 

2019; Wang et al., 2016] have shown that Tm 

exhibited long-term diurnal variations, justifying its 

inclusion. Feature selection was based not only on 

Pearson correlation screening (|r| > 0.3) but also on 

meteorological significance, to avoid loss of physical 

rationale inherent in the purely data-driven 

approaches. 

3.3.3 Model Parameters 

Hyperparameter optimization is used to 

systematically search the combinations of parameters 

that must be set prior to training in order to achieve 

the best generalization on validation data. Five-fold 

cross-validation (5-fold CV) splits the training set 

into five non-overlapping subsets and iteratively uses 

one fold as the validation set and the remaining four 

as the training set. Each hyperparameter 

configuration is thus evaluated multiple times under 

different splits, and its performance is estimated by 

the mean (and standard deviation) of the validation 

metric, which reduces sensitivity to a particular split. 

Based on this procedure, we performed 

hyperparameter optimization using 5-fold CV and 

chose the hyperparameter set with the smallest 

validation mean (and relatively small variance) as the 

optimal configuration. The final hyperparameters are 

briefed below. The network consisted of four hidden 

layers with 256, 128, 64 and 32 neurons, respectively, 

which was designed to progressively extract and 

integrate features so that the model could learn the 

complex patterns in the data and thus improve 

predictive performance. Hidden layers here used the 

Sigmoid activation function. The loss function was 

the mean squared error (MSE) to directly measure the 

discrepancy between predictions and observations. 

The used optimizer was the adaptive optimizer Adam 

(Adaptive Moment Estimation), which could 

adaptively adjust each parameter’s update step using 

the first- and second-moment estimates. The 

maximum number of the training epochs was set to 

1000, but in practice training was stopped adaptively 

by early stopping based on validation performance to 

avoid overfitting and improve computational 

efficiency. To further guard against overfitting, L2 

regularization was applied to enhance the 

generalization. A schematic diagram of the model 

architecture is shown in Figure 4. 

Ts

e

Lat

H

DOY

Tm

Input

256 128 64 32

OutputHidden layer

Fig.4 MHL_Tm Model Structure Diagram 

4 Experimental Analysis 

To assess the accuracy of the MHL_Tm model, 

the bias and RMSE were taken  as evaluation metrics 

as follows: 
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wherein n is the number of the independent test 

samples, 
iŷ  is the Tm predicted by the model and 

iy  

is the reference value. 

4.1 MHL_Tm Model Accuracy Analysis 

To assess the accuracy of MHL_Tm in computing 

Tm over China, the radiosonde‐derived Tm values for 

the year 2019 obtained by integration were used as 

the reference, and the bias and RMSE of the Bevis, 

GPT3, Elastic Net, and MHL_Tm models were 

compared (Table 1). 

Tab. 1 The Accuracy Comparison of Tm from 
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Different Models 

 Bevis GPT3 Elastic Net MHL_Tm 

Bias 
/K 

Max. 
value 

6.46 1.77 1.85 0.21 

Min. 
value 

–3.93 –5.45 –2.06 –2.16 

Average 
value 

0.87 –1.46 –0.11 –0.61 

RMSE 
/K 

Max. 
value 

7.33 12.82 4.52 3.85 

Mini. 
value 

2.28 3.03 2.23 1.86 

Average 
value 

4.27 7.25 3.37 2.77 

 

(1) Bias Analysis 

From the bias performance perspective, the 

differences between the maximum and minimum 

biases with individual models were: 10.39 K (Bevis), 

7.22 K (GPT3), 3.91 K (Elastic Net), and 2.37 K 

(MHL_Tm). Apparently, MHL_Tm had the smallest 

fluctuation in the bias prediction. The bias fluctuation 

can serve as an indicator of model robustness. The 

relatively narrow bias fluctuation of MHL_Tm 

suggested that its error distribution was more uniform 

across different samples, which is particularly 

advantageous for applications requiring stable 

predictive performance. In terms of the mean bias, 

the GPT3 model exhibited a significant negative bias 

of –1.46 K, the Bevis model showed a positive bias 

tendency of 0.87 K, as MHL_Tm had a mean bias of 

–0.61 K, demonstrating strong performance. 

Compared with the GPT3 model, which had the 

largest bias, the bias magnitude of MHL_Tm was 

reduced by 58.22 %. 

To visually illustrate the distribution of prediction 

biases across models, a representative station (28° N, 

102° E, elevation ≈ 1600 m, sample size ≥ 700) was 

chosen for the bias distribution analysis (Fig. 5). 

 
Fig. 5 Bias Distributions of Different Models at a station (28°N, 102°E, elevation ~1600m, sample size≥700) 

Unlike the overall mean-bias metric, the 

single-station case study can reveal the distribution of 

prediction biases, facilitating an in-depth assessment 

of model performance under local climatic 

conditions. As shown in Fig. 5, the MHL_Tm model 

has the lowest mean bias, –0.31 K and a moderate 

dispersion with the standard deviation of 1.93 K, 

indicating that its predictions are both stable and 

close to the expectation. Specifically, the distribution 

curve from MHL_Tm was relatively symmetric, with 

its peak located near zero, demonstrating that the 

majority of predictions closely matched the 

observations. 

(2) RMSE Analysis 

According to the root‐mean‐square error (RMSE), 

the ranking of models by their average prediction 

error is: GPT3 (7.25 K)> Bevis (4.27 K) > Elastic Net 

(3.37 K) > MHL_Tm (2.77 K). MHL_Tm achieved 

the best predictive accuracy, representing a 35.13 % 

reduction in error relative to the traditional Bevis 

model and a 61.79 % reduction compared to the 

GPT3 model. Notably, MHL_Tm also exceled in 

controlling extreme error magnitude: its maximum 

RMSE (3.85 K) is lower than those of Bevis (7.33 K) 

and Elastic Net (4.52 K) whilst its minimum RMSE 

(2.77 K) is near the optimal value, indicating that the 
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model maintains robust performance even under 

extreme scenarios. Box plots of the RMSE for each 

model are shown in Fig. 6.  

 
Fig. 6 Boxplot of RMSE for Different Models 

To further analyze the accuracy of MHL_Tm 

across China, the annual mean bias and RMSE at 

each radiosonde station were compared among the 

four models ( Fig. 7). 

 

Fig. 7 Distribution of Bias and RMSE of Different 

Models across China 

From Fig. (a)–(d), the Bevis model exhibits 

positive bias in northern regions and smaller or even 

negative bias in southern regions, indicating 

pronounced regional differences. The GPT3 model 

shows an overall large negative bias, particularly in 

the north and west, revealing a tendency to 

systematically underpredict. In contrast, the Elastic 

Net and MHL_Tm models have biases close to zero 

with more uniform spatial distributions, 

demonstrating higher predictive accuracy and 

stability across the country. 

From Fig. 7e – 7h, the Bevis model had its RMSE 

generally high in northern China (especially North 

China and the Northeast) and relatively low in the 

south, indicating poorer adaptability at high latitudes. 

The GPT3 model exhibited a high RMSE almost 

nationwide, reflecting a suboptimal performance in 

geographically complex regions. The Elastic Net 

model showed the elevated RMSE in eastern and 

southern areas, particularly along the middle and 

lower Yangtze River region, while having performed 

better in the Southwest and Northwest, suggesting its 

limitations in capturing regional climate variability. 

The MHL model, however, had  its RMSE 

distribution more balanced with low errors in central 

and most southern regions and only slightly larger in 

some northern areas, indicating an overall stable 

performance and strong generalization ability in the 

face of geographic complexity. 

4.2 Effects of Elevation and Latitude on the 

MHL_Tm Model 

Significant differences in predictive accuracy and 

error distribution are evident among models. The 

traditional empirical models (e.g., Bevis) and large‐

scale models (e.g., GPT3) exhibited biases under 

complex conditions, whereas, however, the deep‐

learning models (e.g., MHL_Tm) performed more 

stably nationwide. To further explore the sources of 

these model errors, it is necessary to analyze the 

trends in error variation subject to geographic 

conditions vs. latitude and elevation. 

(1) Effect of Elevation on the MHL_Tm Model 

The scatter plots of bias and RMSE values versus 

the elevation associated with different models are 

shown in Fig. 8: 
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(a) Bias distribution                            

 

(b) RMSE distribution 

Fig. 8 Distribution of Bias and RMSE with respect 

to Altitude 

In the low‐altitude regions (< 1000 m), the MHL 

model exhibited a higher prediction‐error variability 

(mean RMSE of 2.87 K) and a slight underestimation 

(mean bias of –0.54 K). This is mainly due to the 

extreme environmental complexity in these areas 

(such as plains, coastal zones, and urban centers), 

dense human activities (e.g., urban heat islands), 

highly variable local circulations, heterogeneous 

surface types (water bodies, vegetation, buildings), 

and the strong spatial inhomogeneity of water vapor, 

all of which substantially increase the difficulty of 

modeling atmospheric weighted mean temperature 

(Tm), resulting in a higher uncertainty and volatility 

in predictions. By contrast, in high‐altitude regions 

(≥ 1000 m), especially in very high‐altitude areas 

(> 3000 m), the prediction errors decreased markedly 

(mean RMSE drops to 2.59 K, and to 2.11 K in the 

very high‐altitude sites) with an improved 

consistency. This improvement stems from the 

relative simplicity and stability of mountain and 

plateau environments, minimal anthropogenic 

interference, clearer atmospheric boundary‐layer 

structures, low and more uniformly distributed water‐

vapor content, and meteorological processes (such as 

lapse rates) less affected by local complexities. 

making it easier for modeling the governing physical 

laws and thus yielding the more stable and accurate 

predictions, although the scarcity of very high‐

altitude stations may introduce a slight systematic 

estimation (0.13 K). The detailed results are shown in 

Table 2. 

(2) Effect of Latitude on the MHL_Tm Model 

The scatter plots of bias and RMSE values 

versus latitudes associated with different models are 

shown in Fig. 9. 

The latitude‐induced differences in model 

performance stem primarily from the complexity of 

the climatic systems and the underlying data 

availability. In the low‐latitude regions (< 30°), the 

model achieved its lowest prediction error (mean 

RMSE 2.31 K), benefitting from the relatively 

uniform and stable monsoonal climate characteristics 

of the southern subtropical/tropical zone—small 

annual temperature range, abundant moisture, and 

strongly regular seasonal variability. This “mild” 

climate regime allowed models trained on large‐scale 

climatic features to obtain accurate and stable 

predictions more easily. However, as the latitude 

increases, the climatic complexity intensifies, and the 

model’s prediction error rises markedly (mean 

RMSE 3.20 K) particularly in high‐latitude regions 

(> 40°). This is mainly attributable to the pronounced 

temperate continental monsoon climate, large annual 

temperature swings, the stark contrast between 

extremely cold, dry winters and hot, humid summers, 

and highly variable weather systems (e.g., cold 

waves, heavy rainfall), all of which greatly 

complicated the modeling process. Additionally, 

compared with the lower latitudes, the meteorological 

stations at the high latitudes are typically sparser, 

leading to an insufficient training‐data coverage and 

hindering the model’s ability to learn and accurately 

represent these complex, extreme, and highly 

localized atmospheric processes, thereby significantly 
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increasing the prediction uncertainty and error. The detailed results are shown in Table 3. 

Tab. 2 Statistical summary of the effect of elevation on different models 

Bias/K RMSE/K 
Elevation/m MHL ElasticNet GPT3 Bevis MHL ElasticNet GPT3 Bevis 

<1000 –0.54 –0.11 –1.39 –0.11 2.87 3.39 7.477 3.97 
1000~3000 –0.32 –0.40 –1.40 2.12 2.59 3.33 6.77 4.45 

>3000 0.13 0.77 –2.74 6.03 2.11 3.40 6.96 7.03 

 

  

 

 

 

 

 

 

 

 

 

                               (a) Bias distribution                                                         (b) RMSE distribution 

Fig. 9 Distribution of Bias and RMSE of Different Models with respect to Latitude 

Tab. 3 Statistical summary of the effect of altitude on different models 

Bias/K RMSE/K 
Latitude/° MHL ElasticNet GPT3 Bevis MHL ElasticNet GPT3 Bevis 

<30 –0.62 –0.18 –1.23 –1.17 2.31 2.91 4.64 3.47 
30~40 –0.33 –0.19 –1.69 1.32 2.79 3.33 7.27 4.41 
>40 –0.39 –0.09 –1.38 2.57 3.20 3.97 10.18 4.96 

 

5 Conclusions 

This study introduced a multilayer‐perceptron 

neural‐network algorithm into modeling of Tm to 

address the inadequate representation of it spatial 

nonuniformity by traditional empirical models under 

complex geographical and climatic conditions. A 

multiparameter cooperative Tm‐modeling framework 

was constructed. Accordingly, a regionally adaptive 

MHL_Tm model was proposed, which were 

compared with the Bevis, GPT3, and Elastic Net 

models. The results are summarized here below: 

(1) The annual mean bias of MHL_Tm was –

0.61 K, representing the reductions of 29.89 % and 

58.22 % relative to Bevis and GPT3, respectively, 

and a slight increase compared to Elastic Net (–

0.11 K). The annual mean RMSE was 2.77 K, 

corresponding to the improvements of 35.13 %, 

61.79 %, and 17.80 % over Bevis, GPT3, and Elastic 

Net, respectively. 

(2) From an elevation perspective, MHL_Tm’s 

performance varies significantly with respect to 

altitude. In the low‐altitude regions (< 1000 m), the 

model’s mean bias was –0.54 K and mean RMSE was 

2.87 K, indicating a systematic underestimation and a 

larger error variability. By contrast, at mid‐altitudes 

(1000–3000 m), the mean bias decreased to –0.32 K 

whilst the mean RMSE dropped to 2.59 K, showing 

improved prediction accuracy and reduced error 

range. In the high‐altitude regions (> 3000 m), the 

mean bias further decreased to 0.13 K and the mean 

RMSE down to 2.11 K. This likely reflects the 

simpler, more consistent climatic conditions and 

stronger regularity in data distribution at high 
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elevations, which facilitate more accurate modeling, 

although the relatively small sample size at these 

altitudes may affect the statistics. 

(3) From a latitudinal perspective, MHL_Tm’s 

performance also shows the marked differences. In 

the low‐latitude regions (< 30°), the mean bias was –

0.62 K with the mean RMSE of 2.31 K, indicating a 

moderate negative bias (predictions generally below 

observations) but relatively small error range. In the 

mid‐latitude regions (30°–40°), the mean bias 

approached zero (–0.33 K) with the mean RMSE 

slightly increased to 2.79 K, demonstrating a stable 

predictive performance and good data‐fit within this 

band. However, in the high‐latitude regions (> 40°), 

the mean bias raised to –0.39 K with the mean RMSE 

up to 3.20 K, signifying the larger prediction errors 

and the poorer adaptability, likely due to the more 

complex and variable climates, frequent extreme 

weather events, and uneven sample distribution. 

Overall, as the latitude increased, MHL_Tm’s 

prediction errors first rose modestly and then 

increased significantly, reflecting varying adaptability 

across climate zones: strong performance at low 

latitudes versus great challenges at high latitudes. 
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