Journal of Global Positioning Systems (2024)
Vol. 20, Joint No. 1 & No. 2: 57-68
DOI:10.5081/jgps.20.1.57

SRR AR P
Jourmel of Cllobel
2024 [30Sitio Iﬂlilm.g

ocrgrs  SySiEme

STeddh i nbrld B dan

A Deep Learning—Based Regional Atmospheric Weighted Mean

Temperature Model for China

Ruizhao Jiang™,

School of Geomatics, Liaoning Technical University

Bo Li and Huizhong Zhu

47 Zhonghua Road, City of Fuxin, Liaoning, Liaoning, P.R. China, Postal code: 123000

P4 corresponding author

Abstract: To further enhance the accuracy of
(Tm)

models in ground-based Global Navigation Satellite

atmospheric weighted mean temperature
System (GNSS) retrieval of precipitable water vapor
(PWV), we propose and develop a regionally
adaptive Multi-Hidden-Layer neural network for Tm,
hereafter referred to as MHL Tm. A multiparameter
cooperative Tm-modeling framework has been
established using radiosonde observations from 65
launch sites across China during 2014-2018. We
analyzed the nonlinear coupling between surface
temperature (Ts), surface water-vapor pressure (e),
latitude (Lat), elevation (H), and the temporal factor
day of year (DOY) with radiosonde-derived integral
Tm values. Radiosonde data from 2019 served as an
MHL Tm’s

performance, which was then compared against the

independent reference to evaluate
Bevis, GPT3, and Elastic Net models. Experimental
results showed that the annual mean bias of
MHL Tm was —0.61 K, representing reductions of
30% and 58% relative to Bevis and GPT3,
respectively, and slightly higher than Elastic Net (—
0.11 K). The annual mean RMSE of MHL Tm was
2.77K, corresponding to improvements of 35 %,
62 %, and 18 % over Bevis, GPT3, and Elastic Net,
respectively. different latitudinal
altitudinal zones in China, MHL Tm exhibited

superior accuracy and stability compared to Bevis,

Across and

GPT3, and Elastic Net, demonstrating excellent
regional applicability.
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1 Introduction

Precipitable water vapor (PWYV) is a key physical
the total

water-vapor content. Its accurate monitoring is

parameter —representing atmospheric
essential for deepening our understanding of climate-
change mechanisms and improving early warning
capabilities for extreme weather events [Rocken et
al., 1997; Shi et al., 2023; Li et al., 2024; Ma et al.,
2025; Jiang et al., 2025]. Variations in PWV are
closely linked to cloud formation, precipitation
processes, and extreme weather, making PWV an
dataset for weather
studies,
analysis [Jiang et al., 2024; Jiang et al., 2024; Jiang et
al., 2023]. Although the traditional observation

techniques, such as radiosondes, sun photometers,

indispensable forecasting,

climate-change and hydrological-cycle

water-vapor radiometers, and satellite remote

sensing, can provide high-accuracy or large-scale
PWYV information, they are often constrained by
temporal resolution, cost, and environmental
conditions, and thus cannot satisfy the requirements
for real-time, continuous, high-spatiotemporal-
resolution monitoring [Kishore et al., 2011; Yao et
2022; 2018].

conventional applications in navigation, intelligent

al., Zhang et al., Beyond its

traffic management, and emergency rescue, a Global



Navigation Satellite System (GNSS) offers a unique
advantage in that its microwave signals penetrate the
atmosphere, rendering GNSS a low-cost, all-weather,
high-spatiotemporal-resolution tool for atmospheric
sensing [Ji & Shi, 2014; Sobrino & Romaguera,
2008; Vaquero-Martinez et al., 2008; Bevis et al.,
1992]. GNSS has
indispensable technological support for meteorology

Consequently, become an
and climatology research [Hagemann et al., 2003;
Zhang et al., 2019; Liu et al., 2001]. In the GNSS-
based retrieval of PWYV, the zenith wet delay (ZWD)
must be converted to PWV via a crucial water-vapor
conversion coefficient (IT), for which the atmospheric
weighted mean temperature (Tm) is the sole
determining variable [Liu et al., 2001]. Therefore,
considerable research has been devoted to developing
and refining empirical and data-driven models for
Tm.

Methods for calculating Tm can be divided into
two main categories: models based on non-in situ
meteorological parameters and models based on
in-situ observations. The non-in situ models use
atmospheric reanalysis data and therefore do not
depend on local measurements. Bohm et al. [2007]
first developed the Global Pressure and Temperature
(GPT) model using ECMWF’s ERA-40 reanalysis,
employing ninth-order spherical harmonics to
generate gridded surface temperature and pressure
fields thus the

meteorological foundation for GNSS water-vapor

worldwide, establishing

retrieval. Subsequent versions have further improved
GPT2w
wet-temperature layers from ERA-Interim and adds

performance: incorporates 37
annual and semiannual harmonic terms to refine the
lapse-rate calculation, reducing errors by 23 % in
mid- to high-latitude and high-elevation regions (e.g.,
below 3000 m in China). Landskron et al. [2018] then
introduced the GPT3 model, which

atmospheric-gradient  information

integrates
traced from
numerical weather models and uses a 0.5°x0.5° grid
to reduce Tm estimation errors to 1.47 K, with the
successful validation over polar sea-ice regions. At
the same time, the observation-based Tm models
have trended toward regionalization and intelligent

approaches. Bevis et al. [1992] established the classic
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linear model that quantifies the relationship between
surface temperature (Ts) and Tm. But this model
exhibited significant limitations in complex terrain.
The ET-TM model was proposed for China’s
complex climate regimes [Liu etal., 2001]. Based on
data from 73 radiosonde stations, the region-specific
Tm models were derived to incorporate surface
temperature and saturation vapor pressure. The
ET-TM model outperforms the Bevis and GPT-3
the
influences of latitude and elevation on Tm, making it
well suited for PWV retrieval in China. Yao et al.
[2014] systematically explored the global relationship
Tm and Ts
latitude-dependent global Tm model.

models overall and effectively mitigates

between and developed a
With the
maturation of machine-learning methods, many
researchers have widely applied these algorithms to
the

temperature (Tm), owing to their strong function-

modeling atmospheric ~ weighted mean
fitting capabilities. Ding [2018] was the first to
attempt a global Tm model using a backpropagation
(BP) neural network and achieved the higher
accuracy than the GPT2w model. Sun et al. [2021]
used random forest (RF), generalized regression
neural network (GRNN), and BP neural network
(BPNN), respectively, to build Tm models for China
that rely on measured meteorological inputs; their
results showed that all
methods outperformed the GPT3 model. In brief,

constructing Tm models using machine-learning

three machine-learning

approaches is feasible.

Given that Tm is the cornerstone parameter in
GNSS meteorology and reliable PWV retrieval
demands high accurate Tm, traditional methods (e.g.,
the Bevis formula) face a challenge of their
underlying linear assumptions and limited capacity to
capture nonlinear effects in complex terrain. This
the
algorithms to elucidate the intricate relationships

motivates introduction of deep - learning

among meteorological variables and Tm.

2 Study Area and Data
2.1 Study area

The study area encompasses mainland China,



spanning latitudes 4° N to 53° N and longitudes 70°
E to 135° E. It exhibits a pronounced east—west
heterogeneity: from the low-lying southeastern
coastal plains to the high-altitude northwestern
interior  plateaus, forming a  multi-tiered
geomorphological staircase. Climatically, the region
is influenced by both monsoonal and continental
systems, with the southeast being humid and rainy
while the northwest remains arid and dry, and with
the marked diurnal and seasonal temperature
contrasts. The complex geo-climatic patterns in this
region limit the applicability of global meteorological
models (e.g., the GPT series and ERAY), particularly
of

moisture-related parameters such as Tm. Hence, the

introducing systematic biases in estimates

development of more appropriate Tm models is

necessary. Fig. 1 shows the locations of 65

radiosonde stations in the study area.

Latitude

75°E 90°E

105°F 12071 13571
Longitude

150°F

Fig. 1 Radiosonde Station Distribution Map

2.2 Data Source

A dataset comprising radiosonde measurements
from 65 stations within the study area was selected,
covering the five-year period from 2014 to 2018,
with 282,143 soundings in total. Data from 2019
were reserved for the accuracy assessment. The raw
observations (their station latitude and longitude,
temperature, dew-point temperature, and relative
humidity) were downloaded from the University of
Wyoming Archive

Upper-Air Sounding

(http://weather.uwyo.edu/upperair/sounding.html).

The atmospheric weighted mean temperature was
then computed through numerical integration. Tm as

the temperature integral ratio weighted by water
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vapor pressure is given as follows:

- I dz )
I—dz

where € denotes the water-vapor pressure aloft at a
station, T is the absolute temperature in K (Kelvin),
and Z is the vertical height above the station. In
practice, the integral in (1) is discretized to

g
[ o

are, respectively, the mean water-

2)

where € and
vapor pressure and mean temperature of the i th
atmospheric layer, and Ah; is the thickness of the
layer. The vapor pressure € at each level can be
derived from the dew-point temperature Ty (in °C)
provided by the radiosonde data [Kraus, 2004]:

7.5xTy ]

e=6.11 xlo[w”” (3)

The weighted-mean based on radiosonde profiles in
(2) is widely recognized as the most accurate method
for computing T,,, and adopted in this study.

3 MHL_Tm Model Construction in China

To further improve the accuracy of the Tm
(MHL_Tm)
incorporating a multi-hidden-layer neural network

model, a regionalized Tm model
algorithm was developed. The traditional Tm models
often suffer from limited local adaptability when
applied to China’s complex and highly variable
climatic and topographic conditions. In contrast, the
MHL algorithm, with its superior nonlinear fitting
capability and robustness, provides an ideal solution
for handling multidimensional and high-variable
relationships. In comparison with the traditional
models as well as other machine learning approaches,
this the
performance differences and applicable scenarios of

study  comprehensively  evaluates
various methods in term of predicting Tm. This

section specifically describes the model selection:



3.1 Classical Models

The Bevis and GPT3 models were chosen as
reference benchmarks because they have been widely
used in the GNSS/atmospheric literature and serve as

well-established, reproducible baselines for Tm
estimation.

(1) Bevis Formula

Bevis’s empirical formula serves as a

representative traditional model, estimating Tm
through a linear regression relationship with surface
temperature (Ts) and is widely used in GNSS
meteorology. Its principal advantages lie in its clear
physical interpretation and low computational
complexity on account of no complex parameter
tuning, making it a standardized empirical tool in the
early stage of the GNSS water-vapor retrieval. It
provides a performance benchmark for subsequent
analysis, facilitating verification of whether the
data-driven models could achieve a significant

improvement in the predictive accuracy [Bevis et al.,

T, =0.72xT,+70.2 4)

where T,, and Ts denote the weighted atmospheric

mean temperature and surface temperature,

respectively, in K.

(2) GPT3 Grid Model

Based on global meteorological reanalysis data,

GPT3 grid model employs spatiotemporal
interpolation to extend the discrete station
observations onto a regular grid, and applies

pressure-level height corrections and vertical-layer
weighting to spatially extrapolate Tm at different
altitudes. Its core advantage lies in overcoming the
limitations of observational station distribution,
providing reliable prior constraints for unobserved
regions. Studies have indicated that when computing
Tm over China, its results at a spatial resolution of
1° x 1° outperformed those at 5°x5° [Cai, et al.,
2022]. To highlight the superiority of the MHL Tm

model, the GPT3-derived Tm results at 1°x1°

1992]: resolution was used for model performance
comparison:
T = A +Acos 2zDOY +Bgsin 27zDOY + Acos 47DOY sin 47DOY (5)
365.25 365.25 365.25 365.25

where DOY stands for the day of year (unit: day), A,
is the annual mean T, A and B, are the annual-
cycle coefficients, A, and B, are the semiannual-
cycle coefficients, and A, , A,B,, A, , B, are in K
[Landskron et al., 2018].

3.2 Machine Learning Models
(1) Elastic Net

Elastic Net regression combines L; and L,
the

capability while mitigating multicollinearity (e.g., the

regularization to retain feature-selection
seasonal correlation between Ts and DOY), wherein
L, regularization adds a penalty equal to the sum of
the absolute values of the model parameters to the
loss function, whereas L, regularization adds a
penalty equal to the sum of the squared model
parameters in model training. If the linear multi-
feature model significantly outperforms the Bevis

formula, this would indicate that incorporating
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additional predictors could enhance the predictive
skill. Moreover, if it has limited performance,
nonlinear methods may be employed to capture more

complex dependencies.

Let the data X e R™? denote the design matrix (n :
the sample size, p: the number of predictors), yeR"
(the response vector), and Se<R” (the coefficient
vector). The objective of the elastic net is to

minimize the following expression:

oaly-xs ©

2 l-«a
A el +521

where 18], =Zp‘,\ﬂj\ is the L; penalty and HﬂH§ =Zp:ﬂf
j=1 j=1

is the L, penalty. The tuning parameters A (the
regularization strength) and mixing parameter ¢ €[0,1]
determines the relative weight of the L; and L,
penalties (degenerating to Lasso whena =1, and to
Ridge when & = 0 ) [Zou and Hastie, 2005].

(2) Multi-Hidden-Layer Neural Network (MHL)



A multi-hidden-layer neural network provides a
fundamental deep-learning framework with strong
theoretical capacity to approximate complex
functional relationships, enabling exploration of
deep-model potential in Tm prediction. However, due
to the large parameter space and network complexity,
sufficient model training can be time-consuming and
sensitive to hyperparameter settings with a risk of
becoming trapped in local minima. Consequently, an
extensive hyperparameter tuning and a model
validation are required to ensure robustness and

generalization.

3.3 Construction of the MHL_Tm Model

3.3.1 Data Processing

To the raw data, a data-cleaning pipeline was

systematically applied, including missing-value
handling, outlier detection and removal, and data
normalization. Given the large sample size, missing
values were removed outright. For outlier detection, a
multivariate approach based on the residuals of a
Ridge

samples with |z-score|>5 as outliers. Employing a

regression model was used, classifying
|z-score| threshold of 5 is reasonable when the dataset
is sufficiently large: a more lenient threshold ensures
that only the most extreme samples are excluded,
thereby preserving the original data distribution while
removing anomalies that could disproportionately
affect the model. Afterwards,

normalized using Z-score normalization:

the data were

()

where X is the value of a given sample associated

z=(x-p)lo

with a particular feature; ; is its mean value

computed from the dataset; & is its standard
deviation computed from the dataset; z is the
standardized value (Z-score). So, all features have
their samples standardized with their means of 0 and
standard deviations of unity, preserving their original
distribution The

facilitates the model's ability to capture nonlinear

characteristics. standardization

relationships.

3.3.2 Feature Selection

To identify the model inputs, the correlations
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between Tm and various meteorological parameters
were first examined at the 65 radiosonde stations
from 2014 to 2018. According to both statistical
significance and physical rationale, surface
temperature (Tm), water-vapor pressure (e), latitude
(Lat), elevation (H), and day of year (DOY) were

ultimately selected as the predictor variables for Tm.

Raw data

+—J—§

Remove missing Remove
values outliers

\_1_1

Train a Ridge
regression model

'

Calculate
prediction residuals

)

Standardization
|Z-score|>5?

Eﬁ

Yes,remove No,retain
outliers samples

\_1_1

‘ |Z-score| ‘

Standardization

Fig. 2 Data Preprocessing Structure Diagram
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Fig. 3 Correlation Coefficient Plots of T,,, with
Various Features

Specifically, Ts (r=0.9159) and e (r=0.8162)
exhibited a strong positive correlation with Tm,
reflecting the direct driving roles of the surface
thermal radiation and atmospheric moisture in

near-surface thermodynamic processes, in accordance



with thermodynamic energy-transfer theory. Lat
(r=-0.486) and H (r=-0.3745) show their negative
correlations, revealing geographic spatial
differentiation whereby Tm decreases significantly at
high latitudes and elevations due to the reduced solar
insolation and lower atmospheric pressure, and
consistent with the wvertical climatic zonation.
Although DOY (r=0.1575) has a weak linear
correlation with Tm, previous studies [Sun et al.,
2019; Wang et al, 2016] have shown that Tm
exhibited long-term diurnal variations, justifying its
inclusion. Feature selection was based not only on
Pearson correlation screening (|r|>0.3) but also on
meteorological significance, to avoid loss of physical
inherent in the

rationale purely data-driven

approaches.

3.3.3 Model Parameters

Hyperparameter optimization is wused to
systematically search the combinations of parameters
that must be set prior to training in order to achieve
the best generalization on validation data. Five-fold
cross-validation (5-fold CV) splits the training set
into five non-overlapping subsets and iteratively uses
one fold as the validation set and the remaining four
as the training set. FEach hyperparameter
configuration is thus evaluated multiple times under
different splits, and its performance is estimated by
the mean (and standard deviation) of the validation
metric, which reduces sensitivity to a particular split.
Based this

hyperparameter optimization using 5-fold CV and

on procedure, we  performed
chose the hyperparameter set with the smallest
validation mean (and relatively small variance) as the
optimal configuration. The final hyperparameters are
briefed below. The network consisted of four hidden
layers with 256, 128, 64 and 32 neurons, respectively,
which was designed to progressively extract and
integrate features so that the model could learn the
complex patterns in the data and thus improve
predictive performance. Hidden layers here used the
Sigmoid activation function. The loss function was
the mean squared error (MSE) to directly measure the
discrepancy between predictions and observations.

The used optimizer was the adaptive optimizer Adam
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(Adaptive Moment Estimation), which could
adaptively adjust each parameter’s update step using
the first- and second-moment estimates. The

maximum number of the training epochs was set to
1000, but in practice training was stopped adaptively
by early stopping based on validation performance to
avoid overfitting and improve computational
efficiency. To further guard against overfitting, L2
the

generalization. A schematic diagram of the model

regularization was applied to enhance

architecture is shown in Figure 4.

Input Hidden layer Output
] O
. E = E
u =
=
/3
DOY
256 128 64 32

Fig.4 MHL Tm Model Structure Diagram

4 Experimental Analysis

To assess the accuracy of the MHL Tm model,
the bias and RMSE were taken as evaluation metrics

as follows:
bias =1 3°(5, - ¥,) (®)
RMSE:\ %i(yi_yi)z ©

wherein n is the number of the independent test
samples, §, is the Tm predicted by the model and vy,
is the reference value.

4.1 MHL_Tm Model Accuracy Analysis

To assess the accuracy of MHL Tm in computing
Tm over China, the radiosonde-derived Tm values for
the year 2019 obtained by integration were used as
the reference, and the bias and RMSE of the Bevis,
GPT3, Elastic Net, and MHL Tm models were
compared (Table 1).

Tab. 1 The Accuracy Comparison of Ty, from



Different Models

Bevis GPT3  ElasticNet MHL Tm
Max. 6.46 1.77 1.85 021
value

Bias Min.

K el <393 545 2.06 216
Average a0 46 ~0.11 ~0.61
value
Max. 733 12.82 4.52 3.85
value

RMSE  Mini, 228 3.03 223 1.86

/K value
Average o9 505 3.37 2.77
value

(1) Bias Analysis

From the bias performance perspective, the
differences between the maximum and minimum
biases with individual models were: 10.39 K (Bevis),
7.22K (GPT3), 3.91 K (Elastic Net), and 2.37K
(MHL_Tm). Apparently, MHL Tm had the smallest
fluctuation in the bias prediction. The bias fluctuation

(a) Bevis Blas Distribution

075 3,50
Bias/K

(c) ElasticNet Bias Distribution

7.75

1200

Mean: 0.69

50:2.13

Density
o

=]

35

00
Bias/K

s

Medsan; 0.87

0.00.
-12.00

can serve as an indicator of model robustness. The
relatively narrow bias fluctuation of MHL Tm
suggested that its error distribution was more uniform
which

applications

across different samples, is particularly
stable

predictive performance. In terms of the mean bias,

advantageous for requiring
the GPT3 model exhibited a significant negative bias
of —1.46 K, the Bevis model showed a positive bias
tendency of 0.87 K, as MHL._Tm had a mean bias of
—0.61 K, demonstrating strong performance.
Compared with the GPT3 model, which had the
largest bias, the bias magnitude of MHL Tm was

reduced by 58.22 %.

To visually illustrate the distribution of prediction
biases across models, a representative station (28° N,
102°E, elevation = 1600 m, sample size>700) was
chosen for the bias distribution analysis (Fig. 5).

(b) GPT3 Bias Distribution

SD: 381
Modian: -3.33

-1.75

-3.50
Bias/

075 5.00

{d) MHL Bias Distribution

Maan: 0.31
S0 1.93
Modian: -0.16

35

oo
Bias®

35 70

Fig. 5 Bias Distributions of Different Models at a station (28°N, 102°E, elevation ~1600m, sample size>700)

Unlike the the
single-station case study can reveal the distribution of

overall mean-bias metric,
prediction biases, facilitating an in-depth assessment

of model performance under local climatic
conditions. As shown in Fig. 5, the MHL Tm model
has the lowest mean bias, —0.31 K and a moderate
dispersion with the standard deviation of 1.93 K,
indicating that its predictions are both stable and
close to the expectation. Specifically, the distribution
curve from MHL Tm was relatively symmetric, with
its peak located near zero, demonstrating that the
closely matched the

majority of predictions

observations.
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(2) RMSE Analysis

According to the root-mean-square error (RMSE),
the ranking of models by their average prediction
error is: GPT3 (7.25 K)> Bevis (4.27 K) > Elastic Net
(3.37K)>MHL Tm (2.77K). MHL_Tm achieved
the best predictive accuracy, representing a 35.13 %
reduction in error relative to the traditional Bevis
model and a 61.79 % reduction compared to the
GPT3 model. Notably, MHL Tm also exceled in
controlling extreme error magnitude: its maximum
RMSE (3.85 K) is lower than those of Bevis (7.33 K)
and Elastic Net (4.52 K) whilst its minimum RMSE
(2.77 K) is near the optimal value, indicating that the



model maintains robust performance even under
extreme scenarios. Box plots of the RMSE for each
model are shown in Fig. 6.

——

—

Fig. 6 Boxplot of RMSE for Different Models

To further analyze the accuracy of MHL Tm
across China, the annual mean bias and RMSE at
each radiosonde station were compared among the
four models ( Fig. 7).
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Fig. 7 Distribution of Bias and RMSE of Different
Models across China

From Fig.(a)~(d), the Bevis model exhibits

positive bias in northern regions and smaller or even
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negative bias in southern regions, indicating
pronounced regional differences. The GPT3 model
shows an overall large negative bias, particularly in
the north and west, revealing a tendency to
systematically underpredict. In contrast, the Elastic
Net and MHL Tm models have biases close to zero
with

demonstrating  higher

more  uniform  spatial  distributions,

predictive accuracy and

stability across the country.

From Fig. 7e — 7h, the Bevis model had its RMSE
generally high in northern China (especially North
China and the Northeast) and relatively low in the
south, indicating poorer adaptability at high latitudes.
The GPT3 model exhibited a high RMSE almost
nationwide, reflecting a suboptimal performance in
geographically complex regions. The Elastic Net
model showed the elevated RMSE in eastern and
southern areas, particularly along the middle and
lower Yangtze River region, while having performed
better in the Southwest and Northwest, suggesting its
limitations in capturing regional climate variability.
The MHL model, had its RMSE

distribution more balanced with low errors in central

however,

and most southern regions and only slightly larger in
some northern areas, indicating an overall stable
performance and strong generalization ability in the

face of geographic complexity.

4.2 Effects of Elevation and Latitude on the
MHL_Tm Model

Significant differences in predictive accuracy and
error distribution are evident among models. The
traditional empirical models (e.g., Bevis) and large-
scale models (e.g., GPT3) exhibited biases under
complex conditions, whereas, however, the deep-
learning models (e.g., MHL Tm) performed more
stably nationwide. To further explore the sources of
these model errors, it is necessary to analyze the
trends in error variation subject to geographic

conditions vs. latitude and elevation.
(1) Effect of Elevation on the MHL Tm Model

The scatter plots of bias and RMSE values versus
the elevation associated with different models are
shown in Fig. 8:
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Fig. 8 Distribution of Bias and RMSE with respect
to Altitude

In the low-altitude regions (<1000 m), the MHL
model exhibited a higher prediction-error variability
(mean RMSE of 2.87 K) and a slight underestimation
(mean bias of —0.54 K). This is mainly due to the
extreme environmental complexity in these areas
(such as plains, coastal zones, and urban centers),
dense human activities (e.g., urban heat islands),
highly wvariable local circulations, heterogeneous
surface types (water bodies, vegetation, buildings),
and the strong spatial inhomogeneity of water vapor,
all of which substantially increase the difficulty of
modeling atmospheric weighted mean temperature
(Tm), resulting in a higher uncertainty and volatility
in predictions. By contrast, in high-altitude regions
(>1000m), especially in very high-altitude areas
(>3000 m), the prediction errors decreased markedly
(mean RMSE drops to 2.59K, and to 2.11 K in the
very high-altitude sites) with an improved
consistency. This improvement stems from the

relative simplicity and stability of mountain and
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plateau  environments, minimal anthropogenic

interference, clearer atmospheric boundary-layer
structures, low and more uniformly distributed water-
vapor content, and meteorological processes (such as
lapse rates) less affected by local complexities.
making it easier for modeling the governing physical
laws and thus yielding the more stable and accurate
predictions, although the scarcity of very high-
altitude stations may introduce a slight systematic
estimation (0.13 K). The detailed results are shown in

Table 2.
(2) Effect of Latitude on the MHL Tm Model

The scatter plots of bias and RMSE values
versus latitudes associated with different models are
shown in Fig. 9.

The

performance stem primarily from the complexity of

latitude-induced differences in model

the climatic systems and the underlying data
availability. In the low-latitude regions (<30°), the
model achieved its lowest prediction error (mean
RMSE 2.31 K), the

uniform and stable monsoonal climate characteristics

benefitting from relatively
of the southern subtropical/tropical zone—small
annual temperature range, abundant moisture, and
strongly regular seasonal variability. This “mild”
climate regime allowed models trained on large-scale
climatic features to obtain accurate and stable
predictions more easily. However, as the latitude
increases, the climatic complexity intensifies, and the
model’s prediction error rises markedly (mean
RMSE 3.20 K) particularly in high-latitude regions
(>40°). This is mainly attributable to the pronounced
temperate continental monsoon climate, large annual
temperature swings, the stark contrast between
extremely cold, dry winters and hot, humid summers,
and highly variable weather systems (e.g., cold
all

complicated the modeling process. Additionally,

waves, heavy rainfall), of which greatly
compared with the lower latitudes, the meteorological
stations at the high latitudes are typically sparser,
leading to an insufficient training-data coverage and
hindering the model’s ability to learn and accurately
and highly

localized atmospheric processes, thereby significantly

represent these complex, extreme,



increasing the prediction uncertainty and error. The

detailed results are shown in Table 3.

Tab. 2 Statistical summary of the effect of elevation on different models

Bias/K RMSE/K
Elevation/'m MHL ElasticNet GPT3 Bevis MHL ElasticNet GPT3 Bevis
<1000 -0.54 —-0.11 -1.39 -0.11 2.87 3.39 7477 3.97
1000~3000 -0.32 -0.40 -140 212 259 3.33 6.77 445
>3000 0.13 0.77 -2.74 6.03 2.11 3.40 6.96  7.03
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Fig. 9 Distribution of Bias and RMSE of Different Models with respect to Latitude
Tab. 3 Statistical summary of the effect of altitude on different models
Bias/K RMSE/K
Latitude/° MHL ElasticNet GPT3 Bevis MHL ElasticNet GPT3 Bevis
<30 —-0.62 —0.18 -1.23 -1.17 2.3l 291 4.64 347
30~40 —0.33 —0.19 -1.69 132 279 3.33 727 441
>40 -0.39 —0.09 -1.38 2.57 3.20 3.97 10.18  4.96

5 Conclusions

This study introduced a multilayer-perceptron
neural-network algorithm into modeling of Tm to
address the inadequate representation of it spatial
nonuniformity by traditional empirical models under
complex geographical and climatic conditions. A
multiparameter cooperative Tm-modeling framework
was constructed. Accordingly, a regionally adaptive
MHL Tm model proposed, which were
compared with the Bevis, GPT3, and Elastic Net
models. The results are summarized here below:

(1) The annual mean bias of MHL Tm was —
0.61 K, representing the reductions of 29.89 % and
58.22 % relative to Bevis and GPT3, respectively,
and a slight increase compared to Elastic Net (—
0.11K). The annual mean RMSE was 2.77K,

was
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corresponding to the improvements of 35.13 %,
61.79 %, and 17.80 % over Bevis, GPT3, and Elastic
Net, respectively.

(2) From an elevation perspective, MHL Tm’s
performance varies significantly with respect to
altitude. In the low-altitude regions (<1000 m), the
model’s mean bias was —0.54 K and mean RMSE was
2.87 K, indicating a systematic underestimation and a
larger error variability. By contrast, at mid-altitudes
(1000-3000 m), the mean bias decreased to —0.32 K
whilst the mean RMSE dropped to 2.59 K, showing
improved prediction accuracy and reduced error
range. In the high-altitude regions (>3000m), the
mean bias further decreased to 0.13 K and the mean
RMSE down to 2.11 K. This likely reflects the
simpler, more consistent climatic conditions and

stronger regularity in data distribution at high



elevations, which facilitate more accurate modeling,
although the relatively small sample size at these
altitudes may affect the statistics.

(3) From a latitudinal perspective, MHL Tm’s
performance also shows the marked differences. In
the low-latitude regions (< 30°), the mean bias was —
0.62 K with the mean RMSE of 2.31 K, indicating a
moderate negative bias (predictions generally below
observations) but relatively small error range. In the
mid-latitude regions (30°—40°),
approached zero (—0.33 K) with the mean RMSE
slightly increased to 2.79 K, demonstrating a stable

the mean bias

predictive performance and good data-fit within this
band. However, in the high-latitude regions (>40°),
the mean bias raised to —0.39 K with the mean RMSE
up to 3.20 K, signifying the larger prediction errors
and the poorer adaptability, likely due to the more
complex and variable climates, frequent extreme
weather events, and uneven sample distribution.
the latitude increased, MHL Tm’s
prediction errors first rose modestly and then

Overall, as

increased significantly, reflecting varying adaptability
across climate zones: strong performance at low

latitudes versus great challenges at high latitudes.
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