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Abstract: Accurately assessing the hazards posed by 

landslides is of great importance for disaster prevention 

and mitigation. This study proposes a method of 

landslide hazard levels analysis based on displacement 

traction, a term referring to the correlated directional 

influence between surface displacement vectors at 

GNSS (Global Navigation Satellite System) monitoring 

points.  By analyzing these spatial correlations, the 

optimal grid unit size is determined for refined hazard 

levels assessment. To construct a representative target 

area, the improved Sparrow Search Algorithm was 

combined with the k-means clustering algorithm, 

integrating displacement characteristics and the derived 

grid unit size. A hazard assessment dataset was then 

developed for the target area. Subsequently, a stacking 

ensemble model was employed to evaluate landslide 

hazard levels using eleven influencing factors, 

including surface roughness, elevation, and slope angle. 

Experimental results demonstrated that the proposed 

method outperformed the conventional fixed-grid 

approach, yielding a 2.15% improvement in overall 

accuracy, a 1.30% increase in F1-score, and a 3.75% 

gain in the kappa coefficient. This study not only 

enriches the theoretical foundation of assessing 

landslide hazard levels but also provides a powerful 

technical support and practical guidance for the 

scientific prevention and control of landslide disasters. 
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1 Introduction 

Landslides represent a major geological disaster 

seriously threatening human lives and infrastructure 

constructions[1]. Thus, the assessment of landslide 

hazard levels has become an indispensable part of 

prevention and mitigation of landslides[2]. The analysis 

of landslide hazard levels is gradually being shifted 

from traditional geological investigations and 

simulations to advanced remote sensing and geographic 

information systems. Many landslide monitoring 

projects have been conducted using Lidar and InSAR 

(Interferometric Synthetic Aperture Radar), which can 

provide accurate surface displacement data[3-5]. Despite 

their wide-area capabilities, both Lidar and InSAR 

suffer from limitations such as low temporal resolution, 

noise interference in vegetated or steep-slope areas, and 

difficulty detecting localized deformation near failure 

thresholds, which restrict their effectiveness for 

fine-scale hazard analysis. However, despite their 

effectiveness in monitoring landslide hazards across 

large areas, these methods fall short in terms of refined 

individual landslide hazard levels analysis, particularly 

regarding the correlations between surface 

displacement vectors at various monitoring points. In 
Editor-In-Charge: Dr. Dongsheng Zhao 
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landslide hazard level research, the displacement 

traction effect describes how the surface movement at 

one monitoring point can influence the movement at 

adjacent points. By analyzing surface displacement 

data from multiple monitoring points, the correlation 

between displacement vectors can be identified. Such 

analysis is crucial for predicting and preventing 

landslides. 

In addition to modeling physical processes, the 

choice of spatial analysis units—especially the grid 

size—plays a crucial role in landslide hazard mapping. 

Several studies have shown that inappropriate grid size 

may obscure critical spatial variability or introduce 

excessive noise, leading to inaccurate susceptibility or 

hazard classifications. For instance, Süzen and Doyuran 

compared grid-based versus slope unit-based 

approaches and found significant differences in model 

performance depending on grid resolution[6]. More 

recently, Reichenbach et al. reviewed over 150 

landslide susceptibility models and concluded that no 

standard grid size can be universally applied; instead, 

scale optimization should be tailored to each case study 

area[7]. These findings underscore the need for adaptive 

grid size determination in landslide modeling. 

For individual landslides, grid unit delineation 

constitutes an important part of hazard level analysis. 

Traditional methods usually rely on empirical 

delineation, which often depends on fixed map scales 

or expert judgment, lacking quantitative optimization 

and overlooking localized deformation—leading to 

inaccurate or overly generalized assessments. Li et al.[8] 

developed an empirical formula for calculating the grid 

unit size according to the scale of topographic maps. 

However, the selection of the grid unit size required 

more thorough study as it could greatly affect the 

accuracy of landslide hazard levels assessments [9,10]. 

Acknowledging this fact, this research proposes a 

new methodology, which considers the displacement 

traction effect, to analyse landslide hazard levels. It is 

focused on a single landslide. The size of the optimal 

assessment unit is objectively determined through an 

in-depth cluster analysis of the characteristics of 

displacement vectors at the GNSS (Global Navigation 

Satellite System) monitoring points. The grid units, 

where the monitoring points are located, are divided 

into different hazard levels based on their displacement 

characteristics, upon which an accurate assessment 

dataset is constructed. Because the traditional k-means 

clustering algorithm tends to converge to a local 

optimum, the proposed methodology integrates the 

improved sparrow search algorithm (ISSA), effectively 

enhancing global search capabilities and clustering. 

Moreover, to overcome the limitations of using a single 

classification model in the assessment of landslide 

hazard levels[11-13], which is complex by nature, the 

proposed methodology employs an integrated learning 

strategy, specifically, a stacking integration model[14] 

that combines the advantages of multiple strong 

classifiers into a multi-level classifier[15], achieving the 

significantly higher accuracy of  hazard levels 

assessment in comparison with the single classification 

models[16,17]. 

2 Research methods 

2.1 Determination of grid unit size based on 

displacement traction 

The selection of the grid unit size significantly 

affects the assessment of landslide hazard levels. In the 

hazard assessment of a single landslide, each grid unit 

represents a specific spatial area and is assigned with a 

set of geographic attributes such as elevation, slope 

angle, and lithology. Theoretically, the data attributes 

within each grid unit should be consistent. Although 

regular grid units are most commonly used, their sizes 

are typically determined empirically or based on the 

fixed formulas. If the grid unit size is too large or too 

small, it can disrupt data consistency, leading to 

inaccurate assessment results. Therefore, this research 

focuses on determining the optimal grid unit size based 

on the correlation characteristics of monitoring points. 

Specifically, displacement data from GNSS monitoring 

points are combined to form a target area for cluster 

analysis. The optimal grid unit size is determined by 

considering the displacement direction and ensuring the 

consistency in the correlations between monitoring 
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points. 

First, based on an empirical formula[18], a coarse 

division into regular grids is performed. By calculating 

the error range of the formula, a preliminary range of a 

grid unit size is obtained:  

ࡳ ൌ ૠ. ૝ૢ ൅ ૟ ൈ ૚૙ି૝ ൈࡹെ ૛ ൈ ૚૙ିૢ ൈࡹ૛ ൅ ૛. ૢ

ൈ ૚૙ି૚૞ࡹ૜ 
(1) 

where G is the grid unit size, and M is the topographic 

map scale. Then, the optimal grid unit size is 

established by incorporating the displacement traction. 

To analyze the directional characteristics of surface 

displacement, a local Cartesian coordinate system is 

defined for each monitoring point, with the monitoring 

point itself as the origin. The displacement trajectories 

of the monitoring points are categorized according to 

the four quadrants of the coordinate axes (I, II, III, and 

IV) to obtain the distribution of the displacement 

trajectories of the monitoring points (Figure 1). The 

consistency of the displacement direction in each grid 

unit is evaluated by calculating the trajectory 

classification results of the displacement characteristics 

of all monitoring points in that grid unit. The 

consistency of the displacement direction in each grid 

unit is also quantitatively evaluated to generate a 

consistency rate. A grid unit is considered to have the 

optimal size if the displacement direction consistency 

rate of all monitoring points is high. 

Fig. 1 Displacement trajectories of GNSS monitoring 

points 1–6 

2.2 Target area construction 

Based on the optimal grid unit size, the target area 

for hazard level assessment is constructed using the 

proposed clustering approach. However, due to the 

limited number of GNSS monitoring points typically 

available for a single landslide event, sample data 

expansion is necessary to ensure sufficient spatial 

coverage and statistical consistency within each grid 

unit. To this end, a semisupervised learning strategy is 

introduced to augment the displacement-derived 

features extracted from GNSS data and improve the 

robustness of the clustering process. The Improved 

Sparrow Search Algorithm (ISSA) is subsequently 

employed to optimize the k-means clustering. Through 

this displacement feature cluster analysis, the target 

area is combined with the optimal grid unit size to form 

a hazard assessment sample set.   

2.2.1 Sample data expansion 

As the limited number of GNSS displacement 

monitoring points in a single landslide cannot meet the 

requirement for directionally consistent statistical data 

under the same grid unit size, the semisupervised 

learning approach is used to expand the labeled 

samples. Multiple random points are generated as the 

unlabeled sample data and then combined with the 

labeled data, which consist of the detection points 

associated with displacement direction labels. 

Semisupervised learning is then used to transfer the 

labels to the random points, resulting in a significantly 

expanded labeled dataset. 

2.2.2 Target region construction 

The expanded labeled dataset must be effectively 

used to construct the target area for analysing landslide 

hazard levels. To rationally organize the data for 

accurately reflecting the actual hazard posed by a 

landslide, the k-means clustering algorithm, a widely 

used method in cluster analysis for data mining due to 

its simplicity and efficiency[19], is employed to integrate 

the displacement-derived features into the target 

regions with clear hazard labels. Its core objective is to 

assign each sample point to the cluster that corresponds 

to the nearest cluster center after their similarity to each 

center (e.g., Euclidean distance). However, the k-means 

algorithm relies on the initial solution and is prone to 
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converging to a local optimum, which reduces its 

ability to obtain globally optimal clustering results. To 

overcome this limitation, a new type of swarm 

intelligence optimization algorithm is structured by 

further integrating with ISSA. Its key lies in simulating 

the foraging and social behaviors of sparrows. The core 

optimization achieved by ISSA succeeds by means of 

introducing adaptive fractional-order calculus to 

enhance the sparrow search process by adjusting the 

trajectory update mechanism and thereby improve the 

convergence accuracy compared to the standard SSA[20] 

(Figure 2). The k-Means clustering combined with 

ISSA can determine the global scope of optimization in 

the search process, effectively improving clustering 

performance. Specifically, this approach enables the 

clustering of characteristic data of displacements from 

a group of monitoring points. The results are then 

combined with the optimal grid unit to obtain target 

regions and construct a sample dataset for each target 

region based on the assessed landslide hazardousness. 

Fig. 2 Flowchart of the ISSA combined k-means 

clustering 

2.2.3 Construction of landslide hazard classification 

model using ensemble learning 

The assessment of landslide hazard levels can be 

considered a classification and prediction problem. The 

accuracy of the results positively correlates with the 

classification performance. To improve the predictive 

accuracy, an integrated learning framework is 

implemented by combining multiple base classifiers. 

Specifically, we compare and evaluate the performance 

of several commonly used models, including Logistic 

Regression, Gaussian Process, Decision Tree, Support 

Vector Machine (SVM), Random Forest, and Extreme 

Gradient Boosting (XGBoost). Due to the limitations of 

individual classifiers when dealing with sparse, 

imbalanced, noisy, and/or high-dimensional data[21-25], a 

stacking ensemble strategy is further employed to take 

advantage of their strengths and enhance the overall 

classification performance. 

Among these multi-classifier systems, the 

proposed methodology employs a stacking integration 

model as shown in Figure 3. The stacking algorithm 

has a multilayer structure in general. To avoid 

overfitting, a streamlined two-layer design is adopted 

with using a meta-learner that is simpler than the base 

learners in the first layer in order to maintain 

satisfactory generalization performance. The stacking 

method is essentially a classification based on labels. 

So, the meta-learner is used to model the relationships 

between the labels and the corresponding influencing 

factors.  Multiple strong learners are trained on the 

constructed dataset. Then, the one with the highest 

classification accuracy is chosen as the first-level 

learner. Based on this, various meta-learners are trained, 

and the performance of different learner combinations 

is evaluated on both the training and test datasets. Since 

the prediction attempted in this research is a 

classification problem, the simplest and most accurate 

meta-learner is selected. 

3 Experimental procedures 

3.1 Target area construction 

The area under study is Guang’an Village in 

Dahe Township, Wuxi County, Chongqing, China, at 

about 31.54° N, 109.61° E. On October 21, 2017, a 

rapid large-scale landslide occurred in this area, 

resulting in nine casualties. With a total volume of 

approximately 6 × 106 m3 of earth, this landslide 

generated a significant accumulation of earth and rock 
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debris, severely affecting buildings, transportation, and 

especially the water supply system. Due to its large 

scale, it caused different degrees of deformation on 

both sides of the slope, resulting in the formation of 

different impact zones. Satellite images over the area 

before and after the landslide are shown in Figure 4. 

 

Fig. 3 Two-Layer Stacking Framework 

Rainfall is one of the main factors affecting 

landslides. The Guang’an area has typical subtropical 

monsoon climate, with high temperature and abundant 

concentrated precipitation in summer. As shown in 

Figure 5, the period between September and October 

2017 was characterized by continuous rainfall with the 

maximum daily precipitation exceeding 1300 mm. 

Fig. 4 Satellite images before and after the landslide 

 

Fig. 5 Histogram of rainfall in Guang’an area  

(2017/09/02-2017/10/20) 

3.2 Cluster analysis of displacement data 

3.2.1 Grid Unit Scaling and Sample Expansion 

After the empirical formula (1), with a 

topographic map scale of 1:2000, the preliminary grid 

unit size  was approximately 9×9 m2. The optimal 

grid unit size after integrating the error range of the 

formula became in the range of  5×5 – 15×15 m2. 

This range was selected based on empirical trial ranges 

commonly adopted in previous studies and aligned with 

the spatial resolution of the GNSS monitoring data. 

Grid units smaller than 5×5 m² were excluded due to 

data sparsity and increased susceptibility to noise, 

whereas larger units exceeding 15×15 m² tended to 

smooth out local deformation features, reducing 

sensitivity in classification. By using the method for 

determining the grid unit size considering displacement 

traction (see Section 1.1), the displacement data from 

39 GNSS monitoring points with displacement 

attributes were obtained. The statistic of the distribution 

of the displacement directions in the four quadrants (I, 

II, III, and IV) is shown in Figure 6. The 

semisupervised learning for dataset expansion resulted 

in 6000 randomly generated unlabeled points, and then 

the labels of the 39 GNSS points were transferred to 

these points. This resulted in 6039 labeled samples with 

displacement attributes. 
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Fig. 6 Distribution of displacement trajectories for GNSS 

monitoring points 

3.2.2 Determination of the optimal grid unit size 

Two constraints of data homogeneity and data 

volume should be considered when it comes to 

determine the optimal size of a grid unit. As previously 

noted, an optimal size was preliminarily determined to 

be 5×5 - 15×15 m2 . The grid unit was then divided 

into 5×5, 6×6, 7×7, 8×8, 9×9, 11×11, 13×13, 

and 15× 15 m2, and the sample point data with 

displacement attributive labels expanded through 

semisupervised learning were superimposed and 

evaluated in terms of the consistency rate of the 

displacement directions in the different grid units 

across the 39 GNSS monitoring points, which was 

calculated as follows: 

࢟ࢉ࢔ࢋ࢚࢙࢏࢙࢔࢕ࢉ ൌ
ሽࢋࢠ࢏࢙	ࢋ࢒࢖࢓ࢇ࢙	࢏	࢙࢙ࢇ࢒࡯ሼ࢞ࢇࡹ

ࢋࢠ࢏࢙	ࢋ࢒࢖࢓ࢇ࢙	࢒ࢇ࢚࢕࢚
		 

࢏ ∈ ሺ૚, ૛, ૜, ૝ሻ 

(2) 

The distributions of the displacement directions 

associated with different grid unit sizes at the 

monitoring point 1 are shown in Figure 7. As shown in 

Figure 8 (the relationship between the consistency rate 

and grid unit size), the grid unit size at the inflection 

point is considered optimal because it ensures the data 

homogeneity within each unit while also controlling the 

overall data volume. Using an excessively small grid 

size would produce a very large number of grid units 

across the study area, increasing computational 

complexity and data redundancy. The relationships 

between the different grid unit sizes and the 

consistency rates for the monitoring points 1–10 are 

shown in Figures 9 and 10. The grid unit size of 7×7 

m2 resulted in the smallest variations in consistency 

rates and therefore was considered to be the optimal 

size. 

3.2.3 Assessment of sample dataset construction 

using ISSA–k-means clustering 

To ensure the quality of the displacement-derived 

features, we calculated the number of days on which 

the displacement of each of the 39 monitoring points 

exceeded the average displacement across all points. In 

addition, cumulative displacement, average daily 

displacement, maximum daily displacement, and total 

monthly displacement were computed for each point 

from February to August 2017 (characterized by heavy 

rainfall). Features with a correlation greater than 0.85 

(Figure 11) were excluded. Based on the extracted 

displacement-derived features, cluster analysis was 

performed using ISSA–k-means clustering to divide 

the landslide area into grid units. This clustering 

process grouped the assessment units into four distinct 

clusters according to similarities in their displacement 

characteristics. These clusters were then interpreted as 

four hazard levels: high, moderate, low, and very low. 

This unsupervised clustering approach provided a 

data-driven foundation for assigning risk levels to the 

units containing monitoring points, forming the initial 

labeled samples for subsequent semisupervised 

learning. 

 

 

Fig. 7 Distribution of displacement directions in different grid 

unit sizes for monitoring point 1 
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Fig. 8 Relationship between the consistency rate and grid unit 

size for point 1 

 

 

Fig. 9 Consistency rates of different grid unit sizes  

 

Fig. 10 Consistency rates for points 1–10 

 

The assessment units containing the monitoring 

points were labeled accordingly, completing the 

preliminary construction of the assessment dataset. By 

using the semisupervised learning algorithm, the labels 

of the 39 labeled samples were spread to the randomly 

generated unlabeled samples. Finally, 500 labeled 

samples were obtained. Their distributions of the 

hazard levels, which met the requirements for model 

training, are shown in Figure 12. 

 
Fig. 11 Diagram of displacement feature correlations 

Fig. 12 Semisupervised classification of hazard levels 

3.2.4 Stacking model classification 

(1) Influencing factor selection 

The factors influencing landslide hazard levels 

were determined based on a comprehensive analysis of 

the development characteristics and distribution 

patterns of landslides in the study area, including 

stratigraphic lithology, hydrology, engineering 

activities, and other factors. To determine the 

influencing factors, geological hazard data were used 

according to the principles of systematicity, 

comparability, operability, difference, and combination 

of quantitative and qualitative indicators[25]. 11 factors 

were selected: surface roughness, topographic wetness 

index, topographic humidity index, elevation, distance 

from water bodies, distance from roads, distance from 

buildings, distance from geological structural cracks, 

lithology, slope angle and aspect (Figure 13). 
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Fig. 13 Diagram of factors influencing landslide 

hazardousness   

(2) Assessment model training 

To avoid overfitting in the classification process, 

a two-layer stacking model was adopted. The first layer 

consisted of multiple base learners, including decision 

trees, support vector machines, logistic regression, and 

gradient boosting, each selected based on its distinct 

learning bias and proven performance in spatial 

classification tasks. The second layer was a 

meta-learner that integrated the outputs of the base 

models to make final predictions. The diversity of base 

classifiers introduces complementary 

perspectives—while some capture nonlinear boundaries, 

others generalize well under sparse conditions—thus 

enhancing robustness and reducing overfitting through 

error decorrelation.SVM, Gaussian Process, Random 

Forest, and XGBoost models were used as the 

first-level learners due to their high classification 

accuracies[26]. Moreover, various models were tested as 

meta-learners. Their accuracies on the training and test 

datasets are shown in Figure 14. The Decision Tree, 

Random Forest, AdaBoost, and bagging models 

showed overall overfitting when used as meta-learners. 

Therefore, a Logistic Regression model for its 

simplicity and high classification accuracy was selected 

as the meta-learner. 

 
Fig. 14 Accuracy of different meta-learners 

4 Experimental results 

4.1 Comparison of various models’ accuracies 

To evaluate the impact of the grid unit size on the 

assessment accuracy, 500 labeled samples were divided 

into a training dataset and a test dataset in a 7:3 ratio, 

which ensured a good balance between the training and 

testing, and prevented overfitting while maintaining the 

sufficient test accuracy. The two datasets were then 

used to compare the stacking model’s accuracy with the 

grid unit size determined by considering displacement 

traction (7×7 m2) and that determined using the 

conventional grid unit size estimation formula (9×9 

m2). The results are shown in Table 1. The model 

performance was evaluated using standard 

classification metrics including accuracy, F1 score, and 

Cohen’s kappa coefficient, all derived from the 

confusion matrix[27]. The accuracy, F1 score, and kappa 

coefficient obtained using the 7×7 m2 grid unit size 

were 89.32%, 88.95%, and 82.78%, respectively, 

which were 2.15%, 1.30%, and 3.75% higher than 

those obtained using the 9×9 m2 grid unit size, 

respectively. 

The ROC (Receiver Operating Characteristic) 

curves of the tested models were plotted with the false 

positive and true positive rates as their horizontal and 

vertical coordinates at different thresholds, and the 

corresponding AUC (Area Under Curve) values were 

given as well (Figure 15). As can be seen, the stacking 

model using the 7×7 m2 grid unit size had the highest 

AUC (0.963) indicating the most reliable one[28,29]. 
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Table 1 Stacking model accuracy scores obtained using 

7×7 m2 and 9×9 m2 grid unit sizes 

Grid unit 

size 
Accuracy F1 score 

Kappa 

coefficient 

7×7 m2 89.32% 88.95% 82.78% 

9×9 m2  87.17% 87.65% 79.03% 

 

 

Fig. 15 ROC curves of the classification models 

4.2 Comparison of the proposed landslide 
hazard levels assessment method’s results 
with field data 

 To evaluate the reliability of this method, and 

thus its practicality to landslide disaster prevention and 

emergency responses, the results were compared with 

the actual landslide conditions in Guang’an (Figure 16). 

The landslides were divided into 13 areas: the source 

areas (SA 1–4), potential source areas (PSA 1–4), 

potential transportation areas (PTA 1–2), transportation 

areas (TA 1–2), and deposition area (DA)[30]. In line 

with the geological exploration and field investigation, 

the results obtained from the stacking model 

(transformed into raster data according to the 

classification labels) showed that the high hazard level 

was mainly distributed in SA 1–4, and TA, while the 

moderate hazard level was mainly distributed in PSA 

1–4 and PTA 1–2 (Figure 17), indicating high 

prediction accuracy. The lower-left region in Figure 17, 

which contains the residential buildings, was identified 

as a potential impact area with predominantly high and 

moderate hazard level. Therefore, it was recommended 

to deploy additional GNSS monitoring points in this 

area, particularly in the zones exhibiting significant 

deformation, to enhance the spatial resolution of 

deformation monitoring and support more precise early 

warning and mitigation of potential landslide hazards. 

In summary, the stacking method based on the 

grid unit size of 7×7 m2 produced the most accurate 

results than any other models, and the obtained 

distribution map of the landslide hazard levels was 

reliable. This method not only has the high theoretical 

accuracy but can also effectively guide the landslide 

disaster prevention and emergency responses. 

Fig. 16 Actual landslide -induced surface 

deformation profile 

 

Fig. 17 Spatial distribution of landslide hazard 

levels (7×7 m2 grid unit size) 

5 Conclusions and Remarks 

To address the complex issue of landslide hazard 

levels assessment, this study proposes an analytical 

method that considers the displacement traction effect. 
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The proposed method evaluates the correlations 

between characteristic displacements and uses ISSA–

k-means clustering based on surface displacement data 

from monitoring points. This enables the construction 

of an assessment sample dataset by dividing a landslide 

into optimal grid units and determining their 

corresponding hazard levels. The method also employs 

a stacking model that considers 11 key influential 

landslide factors: surface roughness, topographic 

wetness index, topographic humidity index, elevation, 

distance from water bodies, distance from roads, 

distance from buildings, distance from geological 

structural cracks, lithology, slope angle and aspect. 

Two main conclusions can be drawn from the 

conducted experiments. First, the proposed method 

outperforms the conventional grid-based approach in 

terms of accuracy and classification performance, 

demonstrating the effectiveness of the grid unit division 

strategy developed in this study for landslide hazard 

levels assessment. Second, the ISSA–k-means 

clustering can effectively establishes target regions, 

while the stacking model yields results that are highly 

consistent with the actual field data. 

Overall, the proposed method is scientifically 

sound and practical as it provides a valuable reference 

for future research. To enhance the model’s 

applicability and generalizability, future work could be 

focused on exploring migration learning to better adapt 

the model to various regional and typological needs and 

inform more effective decisions for disaster prevention 

and mitigation. 
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