Journal of Global Positioning Systems (2024)
Vol. 20, Joint No. 1 & No. 2: 45-56
DOI:10.5081/jgps.20.1.45

el Ry PR AN
Joumell off Clobell
Fe. PostiomimE

ocrcps  SysiEms

Landslide hazard levels analysis considering displacement traction

Xingchi Chen®”, Yuzhi Meng™™ ", Junzhe Zhou', Yutao Zhou?, Zhengdong Leng?, Kun Wang®

School of Smart City, Chongging Jiaotong University, Chongging 400074, P. R. China

1.

2. Chongging Chuandongnan Engineering Survey & Design Institute Co., Ltd., Chongging 401120, P. R. China
3. China Gezhouba Group Expl Co., Ltd., Hunan 410000, P. R. China
D

Corresponding author, mengyuzhi@mails.cqgjtu.edu.cn

" These authors contributed equally

Abstract: Accurately assessing the hazards posed by
landslides is of great importance for disaster prevention
and mitigation. This study proposes a method of
landslide hazard levels analysis based on displacement
traction, a term referring to the correlated directional
influence between surface displacement vectors at
GNSS (Global Navigation Satellite System) monitoring
points. By analyzing these spatial correlations, the
optimal grid unit size is determined for refined hazard
levels assessment. To construct a representative target
area, the improved Sparrow Search Algorithm was
combined with the k-means clustering algorithm,
integrating displacement characteristics and the derived
grid unit size. A hazard assessment dataset was then
developed for the target area. Subsequently, a stacking
ensemble model was employed to evaluate landslide
hazard levels wusing eleven influencing factors,
including surface roughness, elevation, and slope angle.
Experimental results demonstrated that the proposed
method outperformed the conventional fixed-grid
approach, yielding a 2.15% improvement in overall
accuracy, a 1.30% increase in F1-score, and a 3.75%
gain in the kappa coefficient. This study not only
enriches the theoretical foundation of assessing
landslide hazard levels but also provides a powerful
technical support and practical guidance for the
scientific prevention and control of landslide disasters.
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1 Introduction

Landslides represent a major geological disaster
seriously threatening human lives and infrastructure
constructions™. Thus, the assessment of landslide
hazard levels has become an indispensable part of
prevention and mitigation of landslides'. The analysis
of landslide hazard levels is gradually being shifted
from traditional geological investigations and
simulations to advanced remote sensing and geographic
information systems. Many landslide monitoring
projects have been conducted using Lidar and InSAR
(Interferometric Synthetic Aperture Radar), which can
provide accurate surface displacement datal®®!. Despite
their wide-area capabilities, both Lidar and InSAR
suffer from limitations such as low temporal resolution,
noise interference in vegetated or steep-slope areas, and
difficulty detecting localized deformation near failure
thresholds, which restrict their effectiveness for
fine-scale hazard analysis. However, despite their
effectiveness in monitoring landslide hazards across
large areas, these methods fall short in terms of refined
individual landslide hazard levels analysis, particularly
regarding the  correlations  between  surface
displacement vectors at various monitoring points. In



landslide hazard level research, the displacement
traction effect describes how the surface movement at
one monitoring point can influence the movement at
adjacent points. By analyzing surface displacement
data from multiple monitoring points, the correlation
between displacement vectors can be identified. Such
analysis is crucial for predicting and preventing
landslides.

In addition to modeling physical processes, the
choice of spatial analysis units—especially the grid
size—plays a crucial role in landslide hazard mapping.
Several studies have shown that inappropriate grid size
may obscure critical spatial variability or introduce
excessive noise, leading to inaccurate susceptibility or
hazard classifications. For instance, Slizen and Doyuran
compared grid-based versus slope unit-based
approaches and found significant differences in model
performance depending on grid resolution®. More
recently, Reichenbach et al. reviewed over 150
landslide susceptibility models and concluded that no
standard grid size can be universally applied; instead,
scale optimization should be tailored to each case study
areal’!. These findings underscore the need for adaptive
grid size determination in landslide modeling.

For individual landslides, grid unit delineation
constitutes an important part of hazard level analysis.
Traditional methods usually rely on empirical
delineation, which often depends on fixed map scales
or expert judgment, lacking quantitative optimization
and overlooking localized deformation—leading to
inaccurate or overly generalized assessments. Li et al.®!
developed an empirical formula for calculating the grid
unit size according to the scale of topographic maps.
However, the selection of the grid unit size required
more thorough study as it could greatly affect the
accuracy of landslide hazard levels assessments 1%,

Acknowledging this fact, this research proposes a
new methodology, which considers the displacement
traction effect, to analyse landslide hazard levels. It is
focused on a single landslide. The size of the optimal
assessment unit is objectively determined through an
in-depth cluster analysis of the characteristics of
displacement vectors at the GNSS (Global Navigation
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Satellite System) monitoring points. The grid units,
where the monitoring points are located, are divided
into different hazard levels based on their displacement
characteristics, upon which an accurate assessment
dataset is constructed. Because the traditional k-means
clustering algorithm tends to converge to a local
optimum, the proposed methodology integrates the
improved sparrow search algorithm (ISSA), effectively
enhancing global search capabilities and clustering.
Moreover, to overcome the limitations of using a single
classification model in the assessment of landslide
hazard levels™ ™ which is complex by nature, the
proposed methodology employs an integrated learning
strategy, specifically, a stacking integration model™
that combines the advantages of multiple strong
classifiers into a multi-level classifier™, achieving the
significantly higher accuracy of hazard levels
assessment in comparison with the single classification
modelst8*7].

2 Research methods

2.1 Determination of grid unit size based on
displacement traction

The selection of the grid unit size significantly
affects the assessment of landslide hazard levels. In the
hazard assessment of a single landslide, each grid unit
represents a specific spatial area and is assigned with a
set of geographic attributes such as elevation, slope
angle, and lithology. Theoretically, the data attributes
within each grid unit should be consistent. Although
regular grid units are most commonly used, their sizes
are typically determined empirically or based on the
fixed formulas. If the grid unit size is too large or too
small, it can disrupt data consistency, leading to
inaccurate assessment results. Therefore, this research
focuses on determining the optimal grid unit size based
on the correlation characteristics of monitoring points.
Specifically, displacement data from GNSS monitoring
points are combined to form a target area for cluster
analysis. The optimal grid unit size is determined by
considering the displacement direction and ensuring the
consistency in the correlations between monitoring



points.

First, based on an empirical formula™, a coarse
division into regular grids is performed. By calculating
the error range of the formula, a preliminary range of a
grid unit size is obtained:

G=749+6Xx10"*xM—-2x10"%x M? +2.9 1)
x 107153

where G is the grid unit size, and M is the topographic
map scale. Then, the optimal grid unit size is
established by incorporating the displacement traction.
To analyze the directional characteristics of surface
displacement, a local Cartesian coordinate system is
defined for each monitoring point, with the monitoring
point itself as the origin. The displacement trajectories
of the monitoring points are categorized according to
the four quadrants of the coordinate axes (I, I, 11, and
IV) to obtain the distribution of the displacement
trajectories of the monitoring points (Figure 1). The
consistency of the displacement direction in each grid
unit is evaluated by calculating the trajectory
classification results of the displacement characteristics
of all monitoring points in that grid unit. The
consistency of the displacement direction in each grid
unit is also quantitatively evaluated to generate a
consistency rate. A grid unit is considered to have the
optimal size if the displacement direction consistency
rate of all monitoring points is high.

Point 4 Point 6

Point 5
Fig. 1 Displacement trajectories of GNSS monitoring
points 1-6

2.2 Target area construction

Based on the optimal grid unit size, the target area
for hazard level assessment is constructed using the
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proposed clustering approach. However, due to the
limited number of GNSS monitoring points typically
available for a single landslide event, sample data
expansion is necessary to ensure sufficient spatial
coverage and statistical consistency within each grid
unit. To this end, a semisupervised learning strategy is
introduced to augment the displacement-derived
features extracted from GNSS data and improve the
robustness of the clustering process. The Improved
Sparrow Search Algorithm (ISSA) is subsequently
employed to optimize the k-means clustering. Through
this displacement feature cluster analysis, the target
area is combined with the optimal grid unit size to form
a hazard assessment sample set.

2.2.1 Sample data expansion

As the limited number of GNSS displacement
monitoring points in a single landslide cannot meet the
requirement for directionally consistent statistical data
under the same grid unit size, the semisupervised
learning approach is used to expand the labeled
samples. Multiple random points are generated as the
unlabeled sample data and then combined with the
labeled data, which consist of the detection points
associated with  displacement  direction labels.
Semisupervised learning is then used to transfer the
labels to the random points, resulting in a significantly
expanded labeled dataset.

2.2.2 Target region construction

The expanded labeled dataset must be effectively
used to construct the target area for analysing landslide
hazard levels. To rationally organize the data for
accurately reflecting the actual hazard posed by a
landslide, the k-means clustering algorithm, a widely
used method in cluster analysis for data mining due to
its simplicity and efficiency™, is employed to integrate
the displacement-derived features into the target
regions with clear hazard labels. Its core objective is to
assign each sample point to the cluster that corresponds
to the nearest cluster center after their similarity to each
center (e.g., Euclidean distance). However, the k-means
algorithm relies on the initial solution and is prone to



converging to a local optimum, which reduces its
ability to obtain globally optimal clustering results. To
overcome this limitation, a new type of swarm
intelligence optimization algorithm is structured by
further integrating with ISSA. Its key lies in simulating
the foraging and social behaviors of sparrows. The core
optimization achieved by ISSA succeeds by means of
introducing adaptive fractional-order calculus to
enhance the sparrow search process by adjusting the
trajectory update mechanism and thereby improve the
convergence accuracy compared to the standard SSAP%
(Figure 2). The k-Means clustering combined with
ISSA can determine the global scope of optimization in
the search process, effectively improving clustering
performance. Specifically, this approach enables the
clustering of characteristic data of displacements from
a group of monitoring points. The results are then
combined with the optimal grid unit to obtain target
regions and construct a sample dataset for each target
region based on the assessed landslide hazardousness.

| Input: Displacement Feature Data ‘

}

| Initialize sparrow population ‘

!

Evaluate fitness using DBI (Davies—
Bouldin Index)

!

| Update positions via [SSA with mutation ‘

!

| Apply K-means clustering ‘

Is termination
condition met?

Output: Final clustering

Fig. 2 Flowchart of the ISSA combined k-means
clustering

2.2.3 Construction of landslide hazard classification
model using ensemble learning

The assessment of landslide hazard levels can be
considered a classification and prediction problem. The
accuracy of the results positively correlates with the
classification performance. To improve the predictive
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accuracy, an integrated
implemented by combining multiple base classifiers.
Specifically, we compare and evaluate the performance
of several commonly used models, including Logistic
Regression, Gaussian Process, Decision Tree, Support
Vector Machine (SVM), Random Forest, and Extreme
Gradient Boosting (XGBoost). Due to the limitations of
individual classifiers when dealing with sparse,
imbalanced, noisy, and/or high-dimensional data® !, a
stacking ensemble strategy is further employed to take
advantage of their strengths and enhance the overall
classification performance.

Among these multi-classifier systems, the
proposed methodology employs a stacking integration
model as shown in Figure 3. The stacking algorithm
has a multilayer structure in general. To avoid
overfitting, a streamlined two-layer design is adopted
with using a meta-learner that is simpler than the base
learners in the first layer in order to maintain
satisfactory generalization performance. The stacking
method is essentially a classification based on labels.
So, the meta-learner is used to model the relationships
between the labels and the corresponding influencing
factors. Multiple strong learners are trained on the
constructed dataset. Then, the one with the highest
classification accuracy is chosen as the first-level
learner. Based on this, various meta-learners are trained,
and the performance of different learner combinations
is evaluated on both the training and test datasets. Since
the prediction attempted in this research is a
classification problem, the simplest and most accurate
meta-learner is selected.

learning framework is

3 Experimental procedures
3.1 Target area construction

The area under study is Guang’an Village in
Dahe Township, Wuxi County, Chongging, China, at
about 31.54° N, 109.61° E. On October 21, 2017, a
rapid large-scale landslide occurred in this area,
resulting in nine casualties. With a total volume of
approximately 6 x 10° m® of earth, this landslide
generated a significant accumulation of earth and rock



debris, severely affecting buildings, transportation, and
especially the water supply system. Due to its large
scale, it caused different degrees of deformation on

1% Level Leaners

Random Forest

! Decision Tree
Input dataset i
1

Training data Gaussian Process

Testing data | i Logistic Regression

XGBoost

1
SVM '

both sides of the slope, resulting in the formation of
different impact zones. Satellite images over the area
before and after the landslide are shown in Figure 4.

Output

Logistic Regression

/ (or whichever used) | ; Class Prediction

Final Harzard :

Fig. 3 Two-Layer Stacking Framework

Rainfall is one of the main factors affecting
landslides. The Guang’an area has typical subtropical
monsoon climate, with high temperature and abundant
concentrated precipitation in summer. As shown in
Figure 5, the period between September and October
2017 was characterized by continuous rainfall with the
maximum daily precipitation exceeding 1300 mm.

j L £ L

Quantity of Rairtfall {men]

L1
o8
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Fig. 5 Histogram of rainfall in Guang’an area
(2017/09/02-2017/10/20)

3.2 Cluster analysis of displacement data

49

3.2.1 Grid Unit Scaling and Sample Expansion

After the empirical formula (1), with a
topographic map scale of 1:2000, the preliminary grid
unit size was approximately 9X9 m?. The optimal
grid unit size after integrating the error range of the
formula became in the range of 5X5 — 15X15 m’.
This range was selected based on empirical trial ranges
commonly adopted in previous studies and aligned with
the spatial resolution of the GNSS monitoring data.
Grid units smaller than 5x5 m? were excluded due to
data sparsity and increased susceptibility to noise,
whereas larger units exceeding 15x15 m? tended to
smooth out local deformation features, reducing
sensitivity in classification. By using the method for
determining the grid unit size considering displacement
traction (see Section 1.1), the displacement data from
39 GNSS monitoring points with displacement
attributes were obtained. The statistic of the distribution
of the displacement directions in the four quadrants (I,
i, I, and 1V) is shown in Figure 6. The
semisupervised learning for dataset expansion resulted
in 6000 randomly generated unlabeled points, and then
the labels of the 39 GNSS points were transferred to
these points. This resulted in 6039 labeled samples with
displacement attributes.



Number of Mortorng Sites

Coordinate Cuadrant

Fig. 6 Distribution of displacement trajectories for GNSS

monitoring points

3.2.2 Determination of the optimal grid unit size

Two constraints of data homogeneity and data
volume should be considered when it comes to
determine the optimal size of a grid unit. As previously
noted, an optimal size was preliminarily determined to
be 5X5 - 15X 15 m? . The grid unit was then divided
into 5X5, 6X6, 7X7, 8X8, 9X9, 11X11, 13X13,
and 15X 15 m? and the sample point data with
displacement attributive labels expanded through
semisupervised learning were superimposed and
evaluated in terms of the consistency rate of the
displacement directions in the different grid units
across the 39 GNSS monitoring points, which was
calculated as follows:

Max{Class i sample size}
total sample size

i€(1,234)

consistency =

2

The distributions of the displacement directions
associated with different grid unit sizes at the
monitoring point 1 are shown in Figure 7. As shown in
Figure 8 (the relationship between the consistency rate
and grid unit size), the grid unit size at the inflection
point is considered optimal because it ensures the data
homogeneity within each unit while also controlling the
overall data volume. Using an excessively small grid
size would produce a very large number of grid units
across the study area, increasing computational
complexity and data redundancy. The relationships
between the different grid unit sizes and the
consistency rates for the monitoring points 1-10 are
shown in Figures 9 and 10. The grid unit size of 7X7
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m? resulted in the smallest variations in consistency

rates and therefore was considered to be the optimal
size.

3.2.3 Assessment of sample dataset construction

using ISSA-k-means clustering

To ensure the quality of the displacement-derived
features, we calculated the number of days on which
the displacement of each of the 39 monitoring points
exceeded the average displacement across all points. In
addition, cumulative displacement, average daily
displacement, maximum daily displacement, and total
monthly displacement were computed for each point
from February to August 2017 (characterized by heavy
rainfall). Features with a correlation greater than 0.85
(Figure 11) were excluded. Based on the extracted
displacement-derived features, cluster analysis was
performed using ISSA-k-means clustering to divide
the landslide area into grid units. This clustering
process grouped the assessment units into four distinct
clusters according to similarities in their displacement
characteristics. These clusters were then interpreted as
four hazard levels: high, moderate, low, and very low.
This unsupervised clustering approach provided a
data-driven foundation for assigning risk levels to the
units containing monitoring points, forming the initial

labeled samples for subsequent semisupervised
learning.

Grid 5x5 m? Grid 7=7 m* (.ir'ni 9x9 m*

';ir-id 11%11 m? (iri‘d 13213 m? . (_.r:d I‘S’K I; ;u"'-

Fig. 7 Distribution of displacement directions in different grid

unit sizes for monitoring point 1
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Fig. 10 Consistency rates for points 1-10

The assessment units containing the monitoring
points were labeled accordingly, completing the
preliminary construction of the assessment dataset. By
using the semisupervised learning algorithm, the labels
of the 39 labeled samples were spread to the randomly
generated unlabeled samples. Finally, 500 labeled
samples were obtained. Their distributions of the
hazard levels, which met the requirements for model
training, are shown in Figure 12.
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Fig. 12 Semisupervised classification of hazard levels

3.2.4 Stacking model classification

(1) Influencing factor selection

The factors influencing landslide hazard levels
were determined based on a comprehensive analysis of
the development characteristics and distribution
patterns of landslides in the study area, including
stratigraphic ~ lithology,  hydrology,  engineering
activities, and other factors. To determine the
influencing factors, geological hazard data were used
according to the principles of systematicity,
comparability, operability, difference, and combination
of quantitative and qualitative indicators®®®. 11 factors
were selected: surface roughness, topographic wetness
index, topographic humidity index, elevation, distance
from water bodies, distance from roads, distance from
buildings, distance from geological structural cracks,
lithology, slope angle and aspect (Figure 13).



Fig. 13 Diagram of factors influencing landslide

hazardousness

(2) Assessment model training

To avoid overfitting in the classification process,
a two-layer stacking model was adopted. The first layer
consisted of multiple base learners, including decision
trees, support vector machines, logistic regression, and
gradient boosting, each selected based on its distinct
learning bias and proven performance in spatial
classification tasks. The second layer was a
meta-learner that integrated the outputs of the base
models to make final predictions. The diversity of base
classifiers introduces complementary
perspectives—while some capture nonlinear boundaries,
others generalize well under sparse conditions—thus
enhancing robustness and reducing overfitting through
error decorrelation.SVM, Gaussian Process, Random
Forest, and XGBoost models were used as the
first-level learners due to their high classification
accuracies®®. Moreover, various models were tested as
meta-learners. Their accuracies on the training and test
datasets are shown in Figure 14. The Decision Tree,
Random Forest, AdaBoost, and bagging models
showed overall overfitting when used as meta-learners.
Therefore, a Logistic Regression model for its
simplicity and high classification accuracy was selected
as the meta-learner.
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Fig. 14 Accuracy of different meta-learners

4 Experimental results
4.1 Comparison of various models’ accuracies

To evaluate the impact of the grid unit size on the
assessment accuracy, 500 labeled samples were divided
into a training dataset and a test dataset in a 7:3 ratio,
which ensured a good balance between the training and
testing, and prevented overfitting while maintaining the
sufficient test accuracy. The two datasets were then
used to compare the stacking model’s accuracy with the
grid unit size determined by considering displacement
traction (7 X7 m?) and that determined using the
conventional grid unit size estimation formula (9X9
m?). The results are shown in Table 1. The model
performance was  evaluated using standard
classification metrics including accuracy, F1 score, and
Cohen’s kappa coefficient, all derived from the
confusion matrix?”. The accuracy, F1 score, and kappa
coefficient obtained using the 7X7 m? grid unit size
were 89.32%, 88.95%, and 82.78%, respectively,
which were 2.15%, 1.30%, and 3.75% higher than
those obtained using the 9 X9 m? grid unit size,
respectively.

The ROC (Receiver Operating Characteristic)
curves of the tested models were plotted with the false
positive and true positive rates as their horizontal and
vertical coordinates at different thresholds, and the
corresponding AUC (Area Under Curve) values were
given as well (Figure 15). As can be seen, the stacking
model using the 7x7 m? grid unit size had the highest
AUC (0.963) indicating the most reliable onel?2%.



Table 1 Stacking model accuracy scores obtained using
7x7 m? and 9x9 m? grid unit sizes

Grid unit Kappa
. Accuracy F1 score .
size coefficient
7x7 m? 89.32% 88.95% 82.78%
9x9 m? 87.17% 87.65% 79.03%
1.04 ;r';_-:_'__‘ ——

True Positive Rate

0.04
T

T T T T T
0.0 0.2 0.4 0.6 0.8 Lo
False Positive Rate

Fig. 15 ROC curves of the classification models

4.2 Comparison of the proposed landslide
hazard levels assessment method’s results
with field data

To evaluate the reliability of this method, and
thus its practicality to landslide disaster prevention and
emergency responses, the results were compared with
the actual landslide conditions in Guang’an (Figure 16).
The landslides were divided into 13 areas: the source
areas (SA 1-4), potential source areas (PSA 1-4),
potential transportation areas (PTA 1-2), transportation
areas (TA 1-2), and deposition area (DA). In line
with the geological exploration and field investigation,
the results obtained from the stacking model
(transformed into raster data according to the
classification labels) showed that the high hazard level
was mainly distributed in SA 1-4, and TA, while the
moderate hazard level was mainly distributed in PSA
1-4 and PTA 1-2 (Figure 17), indicating high
prediction accuracy. The lower-left region in Figure 17,
which contains the residential buildings, was identified
as a potential impact area with predominantly high and
moderate hazard level. Therefore, it was recommended
to deploy additional GNSS monitoring points in this

53

area, particularly in the zones exhibiting significant
deformation, to enhance the spatial resolution of
deformation monitoring and support more precise early
warning and mitigation of potential landslide hazards.

In summary, the stacking method based on the
grid unit size of 7x7 m? produced the most accurate
results than any other models, and the obtained
distribution map of the landslide hazard levels was
reliable. This method not only has the high theoretical
accuracy but can also effectively guide the landslide
disaster prevention and emergency responses.
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Fig. 16 Actual landslide -induced surface
deformation profile
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Fig. 17 Spatial distribution of landslide hazard
levels (7 X 7 m? grid unit size)

5 Conclusions and Remarks

To address the complex issue of landslide hazard
levels assessment, this study proposes an analytical
method that considers the displacement traction effect.



The proposed method evaluates the correlations
between characteristic displacements and uses ISSA-
k-means clustering based on surface displacement data
from monitoring points. This enables the construction
of an assessment sample dataset by dividing a landslide
into optimal grid units and determining their
corresponding hazard levels. The method also employs
a stacking model that considers 11 key influential
landslide factors: surface roughness, topographic
wetness index, topographic humidity index, elevation,
distance from water bodies, distance from roads,
distance from buildings, distance from geological
structural cracks, lithology, slope angle and aspect.

Two main conclusions can be drawn from the
conducted experiments. First, the proposed method
outperforms the conventional grid-based approach in
terms of accuracy and classification performance,
demonstrating the effectiveness of the grid unit division
strategy developed in this study for landslide hazard
levels assessment. Second, the ISSA-k-means
clustering can effectively establishes target regions,
while the stacking model yields results that are highly
consistent with the actual field data.

Overall, the proposed method is scientifically
sound and practical as it provides a valuable reference
for future research. To enhance the model’s
applicability and generalizability, future work could be
focused on exploring migration learning to better adapt
the model to various regional and typological needs and
inform more effective decisions for disaster prevention
and mitigation.
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