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Abstract: To address the challenges of energy 

constraints, high real-time requirements, and strong 

adversarial conditions in underwater dynamic target 

pursuit tasks, a highly efficient two-layer dynamic 

target pursuit algorithm is proposed to overcome the 

limitations of multi-autonomous underwater vehicle 

systems in terms of coordination efficiency and task 

execution. First, by analyzing the relative velocities 

of pursuers and the target, the Apollonius circle 

principle is extended to three-dimensional space, 

facilitating a pursuit strategy that aligns more 

effectively with real-world underwater conditions. 

Second, to mitigate the inherent measurement errors 

of sonar detection systems, an adaptive Kalman filter 

is designed to effectively suppress noise interference 

and achieve real-time, accurate prediction of the 

target AUV's motion trajectory. Furthermore, by 

reconstructing the neuronal activity propagation 

mechanism of the Glasius bio-inspired neural 

network, the collaborative decision-making process 

of multiple AUVs is optimized, significantly 

enhancing task execution efficiency. Simulation 

results demonstrate that the proposed algorithm 

improves pursuit distance and time by at least 30% 

and 24%, respectively. In multi-scenario 

generalization tests, the average pursuit distance and 

time are improved by at least 25% and 18%, 

respectively. In anti-interference tests under varying 

sonar detection accuracies, the average pursuit 

distance and time are enhanced by at least 25% and 

22%, respectively. These results collectively validate 

the superior accuracy, robustness, and adaptability of 

the proposed algorithm. 

Key words: Dynamic target capture, Adaptive 

Kalman filter, Glasius bio-inspired neural network, 

Apollonius circle. 

 

I. INTRODUCTION 

Autonomous Underwater Vehicle (AUV) is an 

unmanned underwater robot that is increasingly 

important in ocean exploration and military 

applications due to its small size, low cost, stealthy 

nature, and high flexibility. AUVs are not affected by 

the weather and capable of performing tasks such as 

cooperative search
[1-3]

, target tracking
[4-6]

, and 

cooperative encirclement
[7-9]

 over extended durations. 

Among numerous applications, dynamic target 

capture is a challenging task, which has gained 

significant development on unmanned platforms in 

recent years as a fundamental component of path 

planning. Based on the solution approach, algorithms 

for solving the dynamic target rounding problem can 

be categorized into force-based algorithms, learning-

based algorithms, and bio-inspired algorithms. 

Force-based algorithms
[10,11]

 treat the target as a 

gravitational source generating an attractive force to 

guide pursuers toward it, while treating obstacles as 

repulsive sources to prevent collisions. The method is 

easy to implement and can respond quickly to 

dynamic changes. Although these algorithms 

produce collision-free paths, they are often 

suboptimal and computationally demanding in 

complex environments with numerous obstacles, 

hindering real-time performance. 

In learning-based algorithms, AUVs are regarded 

as intelligences that acquire rewards through trial and 

error in the process of interacting with the 

environment, and gradually learn optimal action 

strategies
[12]

. This data-driven approach allows the 

algorithm to dynamically adjust its strategy to the 

uncertainties and changes in the underwater mission 

by learning the feedback from the environment, but 

its training cost is too high and the model may fail 

due to data bias or noise interference in extreme or 

untrained environments. 
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In bio-inspired algorithms, the cooperative pursuit 

problem is often considered as a modification of 

group behavior. In recent years, Bio-inspired Neural 

Networks (BINN) and their variant, Glasius Bio-

inspired Neural Networks (GBNN), have attracted 

significant attention in the field of multi-intelligence 

due to their efficiency and flexibility. BINN as a real-

time planning algorithm, the updating process is 

computationally burdensome; while GBNN reduces 

the computational complexity, but the information 

propagation delay may still cause it to fall into a local 

optimal solution 
[13]

. 

The existing literature has extensively explored 

methods for dynamic target encirclement, yet several 

shortcomings remain. First, most studies are confined 

to two-dimensional planes and neglect the influence 

of ocean currents. In highly adversarial scenarios 

such as dynamic target encirclement, depth variations 

and ocean current effects are critical factors that 

cannot be overlooked. Therefore, investigating three-

dimensional dynamic encirclement under the 

influence of ocean currents holds significant practical 

importance. Second, current algorithms typically 

assume precise knowledge of the target’s position, 

ignoring the impact of sonar detection accuracy on 

encirclement efficiency, which deviates significantly 

from real-world conditions. 

To address these issues, this paper proposes a dual-

layer dynamic target encirclement algorithm that 

integrates an improved Extended Kalman Filter (EKF) 

with an enhanced GBNN. The algorithm analyzes the 

velocity relationship between the pursuing AUVs and 

the target, incorporating the Apollonius Circle theory 

to extend the encirclement process into three-

dimensional space. The improved EKF effectively 

mitigates the impact of sonar detection inaccuracies, 

enabling precise prediction of the target AUV’s 

position at the next time step. Additionally, by 

integrating ocean current information into the 

enhanced GBNN and optimizing the propagation 

mechanism of neuron activation values, the algorithm 

significantly improves its ability to escape local dead 

zones, thereby achieving rapid and robust 

encirclement of dynamic targets by multiple AUVs. 

II. RELATED WORK 

1. Problem modeling 

In this paper, we study the process of executing a 

cooperative capture task under the influence of ocean 

currents by an intelligent cluster of multiple 

homogeneous AUVs in a three-dimensional 

underwater environment. In this environment, there 

are multiple static obstacles. The rounding AUVs 

attempt to round up a target with intelligent 

countermeasure capabilities, which dynamically 

adjusts its movement strategy according to the level 

of threat it faces. At the beginning of the mission, the 

rounding AUV starts from an initial position and 

gradually approaches the target, eventually realizing 

its encirclement. When the enemy target does not 

detect the AUV, it moves randomly at cruising speed; 

once it detects the AUV, it will escape at a higher 

speed and intelligently selects an escape mode based 

on predefined escape rules. 

1.1 Simplified AUV model 

Define the state vector of the smart body 

as[ , , , , ]i i i i ix y z    , where
ix ,

iy ,
iz  are the coordinates 

of the i-th AUV in the geodetic coordinate system, 

and ,i i  are the pitch angle and yaw angle of the i-th 

AUV, respectively. Meanwhile, the horizontal and 

vertical rotation rates are defined as 
i and 

i as the 

control inputs of the i-th AUV, respectively. 

Therefore, the continuous kinematic model can be 

defined as follow 
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where iv  is the sailing speed of the i-th AUV. As a 

result, the kinematic model of the next time step of 

the AUV [14] can be described as 
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where the superscript t indicates the current time and 

the sampling interval is a time step. 

1.2 Environment model 

AUVs are affected by ocean currents when 

performing dynamic target roundup missions. 

Considering that the mission area is in deeper waters, 

the current speed is usually low. Therefore, the 

current speed in the longitudinal direction can be 

ignored. However, the current in the grid where the 

AUV is located still affects its navigation speed and 

thus its time to reach the target location
[15]

. The ocean 

flow in the mission environment is formed by the 

superposition of several two-dimensional Navier-

Stokes equations as shown in the following equation  
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(4) 

where  , ,
,

c c x c y
V VV represents the current vector at the 

point  ,x y ,  ,
c c c

x y  denotes the center of the 
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Lamb vortex, and 
c

 , 
c

r  are the intensity and radius 

of the vortex, respectively. 

1.3 Apollonius circle decision model 

Each AUV is constrained in its ability to maneuver 

due to overload limitations, and the maximum area it 

can reach is referred to as the containment area. 

Similarly, the escape boundary of a target is the area 

that can be reached by the target while performing 

escape maneuvers with maximum overload. If the 

AUV's roundup zone can completely cover the 

target's escape boundary, the roundup is considered 

to be successful. Therefore, effective roundup of the 

target can be realized by multiple AUVs cooperating 

to form a larger roundup area. The schematic diagram 

of the principle is shown below 
[16][17]

. 

For a single AUV, the Apollonius circle delineates 

its capture region based on the target’s position and 

velocity. The position coordinates of the enclosing 

AUV are[ , , ]a a ax y z  , the coordinates of the target 

AUV are[ , , ]tar tar tarx y z  , and let the coordinates of 

the encounter point P be[ , , ]x y z  , and the ratio of the 

distance of the point P to the enclosing AUV and the 

target AUV is a constant k 
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(5) 

When k = 1, the trajectory of point P is a branch of 

the hyperbola, and when k ≠ 1, the trajectory is the 

Apollonius circle. Introduced into the enclosure 

problem, assuming that a time step in the AUV and 

target axial motion velocity size constant, the 

encounter point P to reach the two distance ratio 

Encirclement

region

Encirclement

region

Encirclement

region

Maneuvering 

escape region

 
Figure 1. Coverage of the escape boundary by the 

capture area 

 that is the ratio of speed, for /a tark v v  ,that is, the 

AUV on the target of the enclosure space that is the 

encounter point P trajectory formed by the 

Apollonius circle, the relevant parameters with the 

AUV and the target's speed, which av is the 

enclosure of the AUV's speed size, 
tarv is the size of 

the target's speed. The center A ( , , )A A Ax y z and 

radius of the Apollonius circle Apr can be calculated 

based on the position of the AUV and the target and 

the velocity ratio, and the formula is as follows 
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(6) 

The core idea of multi-AUV cooperative roundup 

is to use the combination of multiple Apollonius 

circles to construct a roundup area that can 

completely cover the escape area of the target AUV, 

so as to realize the success of roundup. And in the 3D 

rasterized environment, the sign of successful 

roundup is that all the target points that the target 

may escape to in the next time step, i.e., the 

neighboring raster with the resolution of sailing 

distance of one-time step centered on itself, are all 

included in the combined area of Apollonios spheres 

formed by multiple AUVs. 

2. Dynamic target rounding algorithm  

2.1 IEKF algorithm 

Based on the AUV kinematic model in (2), the 

state transfer process is described a 

    ( ) ( ( 1), ( 1))k f k k  X X c                                    

(7) 

Where, k denotes any sampling moment, 

( )kX denotes the state vector of the AUV at the 

moment k , and ( 1)k c denotes the control input at 

the moment 1k 
[18]

. 

The observation quantity is ( ) [ , , ]
k k k

k d  Z  , which 

is the distance of the target from the device, the yaw 

angle and the pitch angle measured by the device at 

the time step. By establishing the state transfer 

equation and observation equation of the AUV, the 

EKF is able to describe the movement pattern of the 

AUV at each time step and its relationship with the 

observation data. Among them, the observation 

equation can be described in the following form 

   ( ) [ ( | 1)]k h k k Z X                                                 

(8) 
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(9) 

where [ ( )]h kX is a nonlinear function of state to 

observation. 
0 0 0
, ,x y z is the coordinates of the 
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observatory set to 0, 0, 0, 
k

x ，
k

y ，
k

z is the 

coordinates of the location of the AUV at the time. 

To mitigate the impact of outliers on prediction 

accuracy, the results are smoothed using an 

Exponential Moving Average (EMA). 

   ( ) (1 ) ( ) ( 1)EMA EMAk k k      Z Z Z                  

(10) 

where, ( )EMA kZ is the smoothed value of the 

moment k , ( )kZ is the observed value of the moment, 

 is the smoothing coefficient, Based on expert 

experience
[19]

, its value should be between 0.9 and 1, 

and the smaller the value of the more inclined to 

recent observations, the larger the value of the 

smoothing effect is stronger. 

One-step state prediction of the target after 

obtaining the observations 
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(11) 

where ˆ ( 1)k X is the state estimate at the previous 

moment, F is the state transfer matrix, which is the 

partial differential Jacobi matrix of the state transfer 

equation ( ( 1), ( 1))f k k X c , ( 1)k P is the state 

covariance matrix at the previous moment, which 

represents the error range of the state estimate, and 

( )kQ is the process noise covariance matrix at the 

time, which represents the uncertainty due to the 

unmodeled dynamics in the model
[20]

. 

The update process follows: 
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(12) 

where ( | 1)k k P is the predicted covariance matrix, 

( )kR  is the time-observed noise covariance matrix
[21]

, 

the Jacobi matrix ( )kH  denotes the first-order partial 

derivatives with respect to ( )kX , and I  is the unit 

matrix. The updating process of ( )kR and ( )kQ with is 

as follows 
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(13) 

where 
k is the innovation series, which measures the 

deviation between forecasts and actual observations. 

  is an adaptive weighting factor,  is an updating 

factor ( 0 1  )
[22][23]

, and the relevant parameters 

are as follows 
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where ˆ( ( | 1))h k k X is the observed value obtained 

from the prediction and   is the scaling factor 

( 0.95 0.99  )
[24][25]

. The settings of  and 

 directly affect the update speed of ( )kR  and 

( )kQ .A smaller update speed can make adjustments 

smoother, reducing the instability of the Kalman gain 

caused by rapid changes in ( )kR and ( )kQ . 

The whole prediction and updating process of 

IEKF is shown in Figure 2. This method avoids the 

limitations of the traditional EKF that relies too much 

on the number of observations and static noise 

settings, and allows the filter to adaptively adjust to 

the real-time performance of the system, thus 

providing more accurate state estimation. 

Acquisition of 
observations

EMA 
smoothing

One-step state 
prediction

Error covariance 
matrix prediction

Calculate the 
Kalman gain

Updating the status 
estimate

Updating the error 
covariance matrix

Updating the noise 
covariance matrix

Updating processstart

Forecasting process

 

Figure 2. IEKF's prediction and update process 

2.2 IGBNN algorithm 

This study analyzes the GBNN updating process to 

enhance the search efficiency of individual AUVs by 

enhancing the global information dissemination 

mechanism as well as improving the effectiveness of 

external stimuli. 

The GBNN consists of discrete Hopfield neurons. 

In the 3D GBNN model, each neuron corresponds to 

a discrete lattice in the configuration space and is 

connected to only 26 neurons in its neighborhood, 

which is considered as a spherical region of 

radius
senr  , the receptive field of the neuron [26]. The 

weight of the connection between the neuron m and 

the neuron n is shown in the following equation: 

   
  sen2 2

,

sen2

exp ,

0,                             

m n m n

m n
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r
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p p p p
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(15) 
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where 
2m n

p p is the Euclidean distance between two 

neurons, 0  is the attenuation factor
[27]

, and the 

connection weight 
,m n

w is responsible for the delay 

and attenuation of the information propagation, and 

the connection between neighboring neurons is the 

key to the propagation of global information by the 

GBNN 

From the point of view of a single neuron, 1t

m
a   is 

the dynamic output of the neuron m, also known as 

the neuron's activity value, is shown in the following 

equation 

   
 

1

,

t t t

m m m n n
n N m

a g I w a



    
 

                                 

(16) 

where  N m  is the set of neurons within the receptive 

field of the m-th neuron, ( )g is the transformation 

function, and t

m
I  is the external stimulus received by 

the m-th neuron at moment t. In the GBNN model, 

stimuli usually include inhibitory stimuli and 

excitatory stimuli. Excitatory stimuli are related to 

the relative positions of the encloser and the target. 

Meanwhile, grids that do not meet the problem 

constraints, such as those occupied by obstacles, 

produce inhibitory stimuli as follows 
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where e is a constant much larger than 1. The 

transformation function ( )g a causes the activity value 

to decrease in an orderly fashion with transmission 

and 0 1   is constant
[28]

. 

In the GBNN model, global information with the 

target location is propagated through the connections 

between neurons, and this unique propagation 

mechanism embeds the global information into the 

neighborhood reward of the GBNN, which enables it 

to select a more optimal waypoint. However, the 

propagation of information in the GBNN model 

suffers from time delay and decay, and the dynamic 

output computation of the neurons may also lead to 

their tendency to fall into local optimal solutions. For 

this reason, in this section, improvements are made in 

terms of both the propagation process and external 

stimuli, aiming to enhance the model's ability to jump 

out of the local optimal solution, and thus improve 

the performance of a single AUV in a roundup 

mission. 

When performing a roundup mission, it will be 

affected by ocean currents, which will change the 

sailing speed and ultimately affect the roundup 

efficiency. When performing the roundup task, the 

current markers on the GBNN network must be taken 

into account
[29]

, and the formula for the connection 

weights can be rewritten as 
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(19) 

where m n

a


V denotes the synthetic speed of AUV 

sailing from the grid m to the grid n, and 
ˆ /m n m n

a a p

 V V V denotes the m n

a


V normalized value. and 

velocity 
a

V satisfy the following equation 

   
22 2

2 cos  
a c a c a c p

V V V V V ,V V                     

(20) 

where 
c

V is the velocity vector of the ocean current 

and 
p

V is the propulsive velocity vector of the AUV. 

Compared with the original formula, this formula 

takes into account the effect of ocean currents and 

uses the sailing time of neighboring grids to 

determine the connection weights between neurons 

instead of directly using the Euclidean distances of 

neighboring grids, which makes the algorithm more 

realistic. 

In addition, in the traditional GBNN algorithm, the 

external stimulus relies only on the current position 

of the target and the surrounding obstacles for path 

planning. However, considering the complex changes 

that AUVs may encounter in dynamic environments, 

this study chooses to employ a confidence function to 

adjust the external stimulus matrix in real time, thus 

dynamically adjusting the path planning of AUVs. 

This approach enables the AUV not only to avoid 

obstacles effectively, but also to move towards the 

target quickly and efficiently. 

The core formula of the confidence function is 

shown as follows 

   
m( )m m mb N D G                                               

(21) 

   cos( )mN                                                            

(22) 

   
2

max

t m

dist

mD e






p p

                                                          

(23) 

where 
mb denotes the set letter value of the grid m, 

mN is a direction function that describes the angular 

relationship between the target and the current AUV 

and guides the AUV toward the target,  is the 

angular difference between the target and the current 
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grid. 
mD is a distance function that gives an excitatory 

stimulus based on the distance between the grid m 

and the target, causing the AUV to choose the 

direction that is the shortest distance from the target, 

2t mp p is the distance between the target and the grid 

m, and max
dist is a constant that controls the range of 

influence of the distance. 
mG is an indicator function 

of whether the grid is occupied or not, and is set to -

10 if the grid is occupied, and 0 otherwise.  is a 

constant used to weight the effects of and
[13]

. 

Then the neuron activity value function can be 

rewritten as follows 

   1

,( ( , ))t t t t

m m m n ma g b o W a                                           

(24) 

where the set letter value t

mb replaces the 

conventional external stimulus I, 
,( , )t t

m n mo W a denoting 

the result after a 3 × 3 × 3 receptive field and a 

convolution with a step size of 1 is performed using 

the pair. 

   Global information about target escape in the 

network is propagated through the convolution 

operation in each iteration. An insufficient number of 

iterations may prevent the effective propagation of 

global information, while too much convolution leads 

to a significant increase in the computational 

complexity of the algorithm. The number of 

convolutions is calculated using a weighted average 

in conjunction with the judgment model of the 

Apollo circle as shown in the following equation. 

   2 2
cov

2

,1
max( ,1)

,

i i

i

a tar a tart

a tar

n


  
 
 
 





A p p p

A p
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where 
cov

tn denotes the number of convolutions at 

time t, max( ) is the maximum function,    denotes 

the downward rounding function, 
2

,
ia tarA p denotes 

the Euclidean distance between the center of the 

Apollonius circle of the i-th AUV and the target, 

2ia tarp p denotes the Euclidean distance between 

the location of the i-th AUV and the target, and   is 

the raster resolution. 

Performing 
cov

n convolution on the 

x y z
M M M  image still has a high computational 

complexity, which can be reduced by processing ( )o  

as a global guide ˆ( )o  if 
,( , )t t

m n mo W a  only used as a 

global guide and does not directly determine the 

shape of the trapping path. 

First, an average pooling kernel of size s s s   is 

used to perform a pooling operation on ta  with step 

size s to extract the mean value of the inputs in each 

receptive field.  Then, multiple convolution 

operations are performed after calculating the number 

of convolutions, and the resolution of the grid 

becomes a multiple of the original resolution. Finally, 

the convolved image is resampled by a bicubic 

interpolation method to recover the element size. 

This operation is called Mean Pooling Multiple 

Convolution Resampling (MPMCR). 

Observing the traditional GBNN update and 

MPMCR processes from a convolutional point of 

view, it can be easily seen that the traditional GBNN 

model can only propagate global information 

outward to a mesh during an update process. 

Compared with traditional GBNN, MPMCR can 

propagate global information to a farther network in 

one update process, improving the ability of IGBNN 

to jump out of the local optimum. In addition, the 

time complexity of MPMCR is as follows 

   cov

3

27
( 2 )

s

t

x y z

x y z

n M M M
O M M M

 
                            (26) 

In contrast, the baseline method computes the 

dynamic output matrix via a single convolution with 

a 3 3 3  kernel, resulting in a time complexity 

of (27 )x y zO M M M  .With the pooling kernel size set to 

s=5, the MPMCR method’s time complexity 

is cov27
(( 2) )

125

t

x y z

n
O M M M   .Compared to the baseline’s 

time complexity (27 )x y zO M M M  ,the MPMCR 

method is less computationally intensive when 

cov 115tn  , Boundary analysis shows 
cov

tn is an integer 

between 1 and 6, ensuring the MPMCR method’s 

time complexity is always lower than the baseline. 

However, MPMCR still needs to avoid the problem 

of easily falling into dead zones and resampling 

oversized elements in the result matrix t
E

[29]
 

Therefore, after each MPMCR, a normalization 

process should be performed, i.e., regularization. 
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By combining the MPMCR and the processes 

included in the ˆ( )o , the formula for the neuronal 

activity value can be reconstructed as 

   1

,
ˆ( ( , , ))t t t t

m m m n ma g b o W a s                                       

(28) 

2.3 Cooperation mechanisms 

Unlike traditional allocation based solely on the 

distance between the pursuers and the target, this 

study takes the angle from each seiner to the marquee 

position into account along with the distance. The 

candidate positions were set as a total of 26 grid 

coordinates adjacent to the grid where the target was 

located, and when the three roundups simultaneously 

occupied three of these 26 grids and satisfied the 
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Apollonius circle's decision condition, the roundup 

was judged successful. 

To ensure effective capture, this study employs the 

artificial potential field method [30] to guide pursuers 

toward optimal positions by adjusting their approach 

angles. In the pursuit process, the enclosure farthest 

from the target is the designated encloser, and its 

movement is realized by adjusting the direction of the 

combined force of the other two enclosers to ensure 

that the combined force of these two enclosers points 

in the direction of the designated encloser as much as 

possible, so as to effectively drive the target to the 

position of the designated encloser. 

In the specific execution process, the applied force 

can be simply set as the unit vector of the candidate 

position pointing to the target position iu and ju , 

then the combined force is the sum of the two unit 

vectors, and the angle between the combined force 

and the direction of the designated fencer is as 

follows 

   
total i j FC u u                                                        

(29) 

   arccos( )total rm

total rm







FC u

FC u
                                     

(30) 

where 
rmu is the unit vector of the target pointing to 

the specified seiner 

   rm

rm

a tar
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a tar


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p p
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p p

                                                    

(31) 

In addition, the total distance is the sum of the 

Euclidean distances between the enclosing AUV and 

its corresponding marquee position, then the 

objective function can be set as C 
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where
,a midp  is the coordinate of the marquee position 

corresponding to the AUV, 
maxdist is the maximum 

size of the map, and 
te
is the time decay factor. The 

complete IEKF-IGBNN algorithm flow is shown 

below in Figure 3. 

Based on this objective function, traversing all 

combinations of candidate locations and selecting the 

point pairs that minimize the objective function while 

satisfying the Apollonius circle decision condition, 

the target location, where the rounded-up AUV is 

heading to, can be determined. 

III. RESULTS AND DISCUSSION 

In this section, we first compare the improved 

algorithm in this paper with multiple baseline 

algorithms in the same environment where multiple 

obstacles are present to reveal the superiority of this 

algorithm in terms of roundup efficiency. Subsequently, 

we test the algorithm in environments with different 

obstacles and current distributions to verify the 

generalization ability of the algorithm. Finally, the anti-

interference ability of the algorithm is further verified 

by testing under different sensor noise conditions. 
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belief function

Update hunters 
position 

Determine if 
hunting is 
complete

finish
start

Update target 
position
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state estimation

Task allocation
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yes
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Figure 3. The running process of improving 

algorithm 

1. Experimental setup 

The experimental scene is a 500 500 500m  square 

region, which is finely divided into a 50 50 50  raster 

network with a resolution of 10m per grid, and four 

obstacles are randomly distributed in the region, 

whose lengths, widths, and heights are randomly 

generated from 10m to 100m, and the experiment-

related parameters are shown in Table 1. 

2. Algorithm validation 

In order to prove the advantages of the IEKF-IGBNN 

algorithm, a series of roundup algorithms such as the 

original GBNN, GBNN-DIS, GBNN-RES, and GBNN- 

CBBA are selected as the control group. The simulation 

comparison of the roundup effect of all the above 

algorithms is carried out under the same experimental 

conditions, and the simulation results are shown in 

Table 2 and Fig. 4-Fig. 8. 

TABLE 1 EXPERIMENTAL PARAMETER SETTINGS 

notation mean value 

/ m  Raster resolution 10 

m  Vortex center 

coordinates 

(500,0),(500,500),(250,150)  

(0,300),(100,550),(50,50)  

  vortex strength -1,1,-1,1,1,-1 

c
r m  vortex radius 60,80,60,120,80,120 
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( / )av m s  Propulsion speed 

for hunters 
1 

( / )tarv m s  Propulsion speed 

for target 
0.5 

  
Measurement of 

the scale factor of 

the noise matrix 

0.99 

  
Update factors for 

process noise 

matrices 

0.1 

  
Smoothness 

coefficient 
0.9 

  
Connection 

weight decay 

factor 

0.95 

  
Transformation 

function decay 

factor 

0.1 

mG  Penalty for raster 

m being occupied 
-10 

  
Confidence 

function 

weighting factor 

0.6 

s 
Mean pooling 

kernel size 
5 

TABLE 2 IMPROVED ALGORITHM AND 

BENCHMARK ALGORITHM EXPERIMENTAL 

RESULTS 

algorithm 
Average distance 

of hunters 

Average time 

of hunters 

IEKF-IGBNN 451.6 516 

GBNN_CBBA 547.2 649 

GBNN_RES 545.5 626 

GBNN_DIS 752.2 772 

GBNN 1289.5 1457 

 
Figure 4. The running result of improving algorithm 

 
Figure 5. The running result of GBNN_CBBA 

 
Figure 6. The running result of GBNN_RES 

 
Figure 7. The running result of GBNN_DIS 

The experimental results show that the IEKF-IGBNN 

algorithm performs well in dynamic target capture tasks, 

with an average capture distance of 451.6 meters, which 

is superior to all other algorithms. Compared to the 

GBNN_CBBA algorithm, this distance has been 

reduced by 17.5%; Compared with GBNN-RE, GBNN-

DIS, and traditional GBNN algorithms, it has reduced 

by 17.2%, 40.0%, and 65.0%, respectively. In addition, 

the time step of IEKF-IGBNN is 516, which is also the 

shortest, reducing at least 17.6% compared to other 

algorithms and 64.6% compared to traditional GBNN. 

These results demonstrate significant advantages in 

distance and time efficiency of the improvement, 

demonstrating its efficiency and effectiveness in 

dynamic target capture tasks. 

 
Figure 8. The running result of GBNN 
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2. Verification of generalization capabilities 

To verify the generalization ability of the improved 

algorithm, the overall map environment is altered by 

randomly adjusting the position, size, and number of 

obstacles within the map, as well as changing the 

strength and direction of ocean currents, and the 

experiment is repeated 50 times. During this process, 

the initial positions of the roundup AUVs and the target 

AUVs are kept constant to ensure the stability of the 

experimental conditions. The operation results of the 

improved algorithms and the various benchmark 

algorithms under 50 randomized experiments are shown 

in Tables 3 and 4 and Figures 9 and 10. 

From Table 3, it can be analyzed that the improved 

algorithm has significant advantages over other 

algorithms in terms of total sailing distance. Compared 

to other algorithms, its average distance has decreased 

by 20.38% to 53.85%, with the optimization of 

traditional GBNN being particularly outstanding, 

reaching 53.85%. In the worst case, the maximum 

distance of IGBNN is 1706 meters, which is 25.34% to 

59.33% lower than other algorithms; In the best-case 

scenario, its minimum distance is 1269 meters, which is 

5.51% to 53.21% less than other algorithms. In addition, 

the data range of the improved algorithm is only 437 

meters, far smaller than other algorithms. 

From Table 4, it can be analyzed that the improved 

algorithm also outperforms the other algorithms in 

terms of time efficiency. Compared with other 

algorithms, its average navigation time has been 

optimized by 18.84% to 55.34%, the maximum 

navigation time is 27% to 60% lower than other 

algorithms, and the shortest navigation time has been 

reduced by 5% to 54.5%. It is superior to the benchmark 

algorithm in all dimensions, reflecting the superior 

performance of the improved algorithm in terms of 

capture efficiency and generalization ability. 

TABLE 3 STATISTICAL RESULTS OF REPEATED 

EXPERIMENT DISTANCE 

algorithm 

Maximum 

total 

sailing 

distance 

(m) 

Minimum 

total 

sailing 

distance 

(m) 

Average 

total 

distance 

traveled 

(m) 

IEKF-IGBNN 1706 1269 1455 

GBNN_CBBA 3150 1632 2162 

GBNN_RES 2390 1400 1872 

GBNN_DIS 2285 1343 1827 

GBNN 4194 2712 3153 

TABLE 4 STATISTICAL RESULTS OF REPEATED 

EXPERIMENT TIME 

algorithm 

Maximum 

sailing 

time 

(steps) 

Minimum 

sailing 

time 

(steps) 

Average 

distance 

time 

(steps) 

IEKF-IGBNN 629 496 552 

GBNN_CBBA 1137 618 797 

GBNN_RES 909 549 705 

GBNN_DIS 862 522 680 

GBNN 1581 1091 1237 

 
Figure 9. Box plot of total sailing distance 

distribution 

 
Figure 10. Box plot of sailing time distribution 

From the box plot, it can also be seen that the 

improved algorithm has lower median, upper and lower 

quartiles than other algorithms in both distance and time, 

and its box size is smaller, indicating that its 

performance fluctuates less in different environments 

and has higher stability. 

Anti interference capability verification 

Due to the inherent positioning errors of sonar in 

underwater environments, research has shown that the 

current sonar ranging accuracy is usually within the 

range. Therefore, three simulation conditions are set: the 

mean distance measurement error is 5m, 10m, 15m, and 

25m, respectively, and the distance measurement error 

variance is 1m2. The simulation experiments for each 

condition were repeated 20 times to verify and 

demonstrate the superior anti-interference ability of the 

algorithm. The experimental results are shown in Tables 

5-6 and Figures 11-12. 

TABLE 5 STATISTICS OF AVERAGE TOTAL 

DISTANCE TRAVELED UNDER 

DIFFERENT MEANS WITH A VARIANCE 

OF 1 M
2
 IN SENSOR MEASUREMENT 

ERROR 

algorithm 

Mean 

error  

5m 

Mean 

error 

10m 

Mean 

error 

15m 

Mean 

error 

25m 

IEKF-IGBNN 1369 1407 1430 1513 

GBNN_CBBA 1945 2171 2258 2344 

GBNN_RES 1697 1730 2063 2462 
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GBNN_DIS 1924 1838 1801 2148 

GBNN 3232 3046 3161 3715 

TABLE 6 STATISTICS OF AVERAGE TRAVEL TIME 

UNDER DIFFERENT MEANS WITH A 

VARIANCE OF 1 M
2
 IN SENSOR 

MEASUREMENT ERROR 

algorithm 

Mean 

error  

5m 

Mean 

error 

10m 

Mean 

error 

15m 

Mean 

error 

25m 

IEKF-IGBNN 531 541 551 573 

GBNN_CBBA 730 732 839 883 

GBNN_RES 731 653 774 932 

GBNN_DIS 692 703 664 779 

GBNN 1243 1182 1239 1424 

 

 
Figure 11. Bar chart of total sailing distance 

distribution 

 
Figure 12. Bar chart of sailing time distribution 

The improved algorithm achieved an average total 

distance of 1429.75 meters across sonar ranging errors 

from 5 to 25 meters, significantly outperforming other 

algorithms. Compared to the original GBNN, it has 

reduced the distance by an average of about 56.5%; 

Compared to GBNN_CBBA, GBNN-RE, and GBNN-

DIS, they decreased by approximately 34.4%, 28.1%, 

and 25.8%, respectively. Especially when the accuracy 

is low, the advantages of improving the algorithm are 

more obvious. In terms of navigation time, numerically 

speaking, the average navigation time of the improved 

algorithm is 549 steps, which is consistently more than 

54.2% lower than GBNN under different sonar ranging 

errors, and 22.6% to 31.0% lower than other algorithms. 

In addition, Experimental results demonstrate that the 

proposed algorithm achieves a total navigation distance 

fluctuation range of 144 meters and a total navigation 

time fluctuation range of 42 steps, both indicating 

excellent stability. In contrast, the GBNN_RES 

algorithm exhibits a navigation distance fluctuation 

range of 765 meters and a total navigation time of 279 

steps, the poorest performance among all compared 

algorithms, highlighting its high sensitivity to 

measurement errors and lack of stability. Compared to 

other algorithms, the proposed method shows a 

significantly smaller fluctuation range, demonstrating 

that the IEKF effectively mitigates the impact of sonar 

detection errors, substantially reducing the influence of 

measurement inaccuracies and enhancing encirclement 

efficiency. In summary, the proposed algorithm exhibits 

outstanding stability and robustness against interference. 

4. Validation of Adaptability in Strong Adversarial 

Ocean Current Environments 

To rigorously validate the robustness of the improved 

algorithm under strong ocean current conditions, we 

conducted controlled experiments by fixing the 

positions of obstacles and AUVs while solely varying 

the intensity and direction of ocean currents to simulate 

diverse current environments. Four distinct current 

intensities (-2, -1, 1, 2) were selected, with positive 

values representing counterclockwise vortex rotation 

and negative values indicating clockwise rotation. Each 

intensity level was tested through 10 repeated 

experiments to ensure statistical reliability. The 

experimental results for the improved algorithm and 

baseline algorithms are presented in Tables 7-8 and 

Figures 13-14, comprehensively demonstrating the 

algorithms’ performance across varying current 

intensities and directions. 

TABLE 7 STATISTICS OF AVERAGE SAILING TIME 

UNDER DIFFERENT OCEAN CURRENT 

INTENSITIES 

algorithm 

Vortex 

strength 

-2 

Vortex 

strength 

-1 

Vortex 

strength 

1 

Vortex 

strength 

2 

IEKF-IGBNN 562 516 583 637 

GBNN_CBBA 631 581 909 872 

GBNN_RES 571 741 803 1072 

GBNN_DIS 628 528 886 1071 

GBNN 1195 1157 1252 1896 

TABLE 8 STATISTICS OF AVERAGE TOTAL SAILING 

DISTANCE UNDER DIFFERENT OCEAN 

CURRENT INTENSITIES 

algorithm 

Vortex 

strength 

-2 

Vortex 

strength 

-1 

Vortex 

strength 

1 

Vortex 

strength 

2 

IEKF-IGBNN 1815 1720 1565 1724 

GBNN_CBBA 2045 2361 2073 2543 

GBNN_RES 1921 1751 2169 2863 

GBNN_DIS 2222 1914 2338 2247 

GBNN 3580 3440 2926 2991 
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Figure 13. Distribution of Average Sailing Time 

under Different Ocean Current 

Intensities 

The IEKF-IGBNN algorithm demonstrates 

exceptional performance in both sailing time and total 

sailing distance across varying ocean current intensities, 

showcasing significant superiority. In terms of 

travelling time, IEKF-IGBNN consistently achieves the 

lowest values, reducing sailing time by up to 66.4% 

compared to the baseline GBNN algorithm. Against 

other algorithms, IEKF-IGBNN outperforms in all 

vortex strength conditions, with particularly pronounced 

advantages under strong currents. Moreover, its sailing 

time exhibits minimal variation (121 time steps), far 

lower than GBNN and other variants, highlighting its 

remarkable stability and adaptability in dynamic marine 

environments. 

 
Figure 14. Distribution of Average Total Sailing 

Distance under Different Ocean Current 

Intensities 

Regarding total sailing distance, IEKF-IGBNN 

consistently maintains the shortest distances, achieving 

reductions of 42.4% to 50.0% compared to the baseline 

GBNN. Compared to other algorithms, it saves 11.2% 

to 33.1% in distance across all conditions, with superior 

performance in strong current scenarios. Its distance 

variation is exceptionally small (250 meters), 

significantly less than GBNN and other variants, further 

underscoring its robustness. From the error bars in the 

figure, it is evident that the improved algorithm has 

significantly shorter error bars compared to other 

algorithms, demonstrating its higher stability and 

reliability. 

In summary, the IEKF-IGBNN algorithm exhibits 

substantial advantages in optimizing both sailing time 

and distance, delivering significant reductions while 

maintaining exceptional stability and adaptability across 

diverse vortex strengths. Compared to the baseline 

GBNN and other variants, IEKF-IGBNN excels in 

efficiency, robustness, and navigational planning in 

complex marine environments, making it the optimal 

choice. 

IV. CONCLUSION 

This study investigates dynamic target encirclement 

by multiple AUVs in 3D underwater environments. We 

developed an IEKF to address sonar detection errors, 

significantly enhancing target position prediction 

accuracy and system robustness. Furthermore, an 

optimized GBNN improves path planning efficiency 

through refined neuron activation and enhanced AUV 

collaboration. Simulations confirm the effectiveness and 

generalization of the proposed algorithms. However, the 

study is limited by the absence of physical experimental 

validation and its focus on single-target encirclement. 

Future research should prioritize real-world 

experimental validation, extend the framework to multi-

target encirclement scenarios, and investigate 

distributed cooperative task allocation for swarm-based 

operations. 
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