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Abstract: To address the challenges of energy
constraints, high real-time requirements, and strong
adversarial conditions in underwater dynamic target
pursuit tasks, a highly efficient two-layer dynamic
target pursuit algorithm is proposed to overcome the
limitations of multi-autonomous underwater vehicle
systems in terms of coordination efficiency and task
execution. First, by analyzing the relative velocities
of pursuers and the target, the Apollonius circle
principle is extended to three-dimensional space,
facilitating a pursuit strategy that aligns more
effectively with real-world underwater conditions.
Second, to mitigate the inherent measurement errors
of sonar detection systems, an adaptive Kalman filter
is designed to effectively suppress noise interference
and achieve real-time, accurate prediction of the
target AUV's motion trajectory. Furthermore, by
reconstructing the neuronal activity propagation
mechanism of the Glasius bio-inspired neural
network, the collaborative decision-making process
of multiple AUVs is optimized, significantly
enhancing task execution efficiency. Simulation
results demonstrate that the proposed algorithm
improves pursuit distance and time by at least 30%
and  24%, respectively. In  multi-scenario
generalization tests, the average pursuit distance and
time are improved by at least 25% and 18%,
respectively. In anti-interference tests under varying
sonar detection accuracies, the average pursuit
distance and time are enhanced by at least 25% and
22%, respectively. These results collectively validate
the superior accuracy, robustness, and adaptability of
the proposed algorithm.

Key words: Dynamic target capture, Adaptive
Kalman filter, Glasius bio-inspired neural network,
Apollonius circle.
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I. INTRODUCTION

Autonomous Underwater Vehicle (AUV) is an
unmanned underwater robot that is increasingly
important in ocean exploration and military
applications due to its small size, low cost, stealthy
nature, and high flexibility. AUVs are not affected by
the weather and capable of performing tasks such as
cooperative search™, target tracking!®, and
cooperative encirclement!” over extended durations.
Among numerous applications, dynamic target
capture is a challenging task, which has gained
significant development on unmanned platforms in
recent years as a fundamental component of path
planning. Based on the solution approach, algorithms
for solving the dynamic target rounding problem can
be categorized into force-based algorithms, learning-
based algorithms, and bio-inspired algorithms.

Force-based algorithms! %" treat the target as a
gravitational source generating an attractive force to
guide pursuers toward it, while treating obstacles as
repulsive sources to prevent collisions. The method is
easy to implement and can respond quickly to

dynamic changes. Although these algorithms
produce collision-free paths, they are often
suboptimal and computationally demanding in

complex environments with numerous obstacles,
hindering real-time performance.

In learning-based algorithms, AUVs are regarded
as intelligences that acquire rewards through trial and
error in the process of interacting with the
environment, and gradually learn optimal action
strategies™™. This data-driven approach allows the
algorithm to dynamically adjust its strategy to the
uncertainties and changes in the underwater mission
by learning the feedback from the environment, but
its training cost is too high and the model may fail
due to data bias or noise interference in extreme or
untrained environments.
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In bio-inspired algorithms, the cooperative pursuit
problem is often considered as a modification of
group behavior. In recent years, Bio-inspired Neural
Networks (BINN) and their variant, Glasius Bio-
inspired Neural Networks (GBNN), have attracted
significant attention in the field of multi-intelligence
due to their efficiency and flexibility. BINN as a real-
time planning algorithm, the updating process is
computationally burdensome; while GBNN reduces
the computational complexity, but the information
propagation dela¥ may still cause it to fall into a local
optimal solution 3!,

The existing literature has extensively explored
methods for dynamic target encirclement, yet several
shortcomings remain. First, most studies are confined
to two-dimensional planes and neglect the influence
of ocean currents. In highly adversarial scenarios
such as dynamic target encirclement, depth variations
and ocean current effects are critical factors that
cannot be overlooked. Therefore, investigating three-
dimensional dynamic encirclement under the
influence of ocean currents holds significant practical
importance. Second, current algorithms typically
assume precise knowledge of the target’s position,
ignoring the impact of sonar detection accuracy on
encirclement efficiency, which deviates significantly
from real-world conditions.

To address these issues, this paper proposes a dual-
layer dynamic target encirclement algorithm that
integrates an improved Extended Kalman Filter (EKF)
with an enhanced GBNN. The algorithm analyzes the
velocity relationship between the pursuing AUVs and
the target, incorporating the Apollonius Circle theory
to extend the encirclement process into three-
dimensional space. The improved EKF effectively
mitigates the impact of sonar detection inaccuracies,
enabling precise prediction of the target AUV’s
position at the next time step. Additionally, by
integrating ocean current information into the
enhanced GBNN and optimizing the propagation
mechanism of neuron activation values, the algorithm
significantly improves its ability to escape local dead
zones, thereby achieving rapid and robust
encirclement of dynamic targets by multiple AUVSs.

Il. RELATED WORK
1. Problem modeling

In this paper, we study the process of executing a
cooperative capture task under the influence of ocean
currents by an intelligent cluster of multiple
homogeneous AUVs in a three-dimensional
underwater environment. In this environment, there
are multiple static obstacles. The rounding AUVs
attempt to round up a target with intelligent
countermeasure capabilities, which dynamically
adjusts its movement strategy according to the level
of threat it faces. At the beginning of the mission, the
rounding AUV starts from an initial position and

14

gradually approaches the target, eventually realizing
its encirclement. When the enemy target does not
detect the AUV, it moves randomly at cruising speed;
once it detects the AUV, it will escape at a higher
speed and intelligently selects an escape mode based
on predefined escape rules.

1.1 Simplified AUV model

Define the state vector of the smart body
as[x,V,z.,6,¢], wherex ,y,,z are the coordinates
of the i-th AUV in the geodetic coordinate system,
and g, o are the pitch angle and yaw angle of the i-th
AUV, respectively. Meanwhile, the horizontal and
vertical rotation rates are defined as @ and ¢ as the
control inputs of the i-th AUV, respectively.

Therefore, the continuous kinematic model can be
defined as follow

X, =V, COS ¢, COS 6,
Yy, =V, Cos¢, sin 6,
z, =v;sing,
@)
where V, is the sailing speed of the i-th AUV. As a

result, the kinematic model of the next time step of
the AUV [14] can be described as

X" =X +V; cos(g +g'At) cos(6! + w!At)- At
Yt =yl +Vi cos(gf + @i At)sin(6) + o At)- At
7" =z} +visin(g + 4 At)- At

where the superscript t indicates the current time and
the sampling interval is a time step.

1.2 Environment model

AUVs are affected by ocean currents when
performing dynamic target roundup missions.
Considering that the mission area is in deeper waters,
the current speed is usually low. Therefore, the
current speed in the longitudinal direction can be
ignored. However, the current in the grid where the
AUV is located still affects its navigation speed and
thus its time to reach the target location™. The ocean
flow in the mission environment is formed by the
superposition of several two-dimensional Navier-
Stokes equations as shown in the following equation

vV, __2y-y) y°)z ' 1—exp{——|l_zl° ZJ
27|y -7, r,

VC :_M.[l_exp(_@JJ
¥ 27[|Z_Zc 2 rcz
(4)

where v/ = (V... )represents the current vector at the

point y =(x,y). z. =(x,y,) denotes the center of the

)

®)



Lamb vortex, and Q_, I are the intensity and radius
of the vortex, respectively.

1.3 Apollonius circle decision model

Each AUV is constrained in its ability to maneuver
due to overload limitations, and the maximum area it
can reach is referred to as the containment area.
Similarly, the escape boundary of a target is the area
that can be reached by the target while performing
escape maneuvers with maximum overload. If the
AUV's roundup zone can completely cover the
target's escape boundary, the roundup is considered
to be successful. Therefore, effective roundup of the
target can be realized by multiple AUVs cooperating
to form a larger roundup area. The schematic diagram
of the principle is shown below 2607,

For a single AUV, the Apollonius circle delineates
its capture region based on the target’s position and
velocity. The position coordinates of the enclosing
AUV are[X,,Y,,z,] , the coordinates of the target

AUV are[X.,, Viar» Zior] - @nd let the coordinates of
the encounter point P be[x, y,z] , and the ratio of the

distance of the point P to the enclosing AUV and the
target AUV is a constant k

(o N -y ) + (22,
\/(X_ Xtar)z + (y_ ytar)2 + (Z - Ztar)2
()
When k = 1, the trajectory of point P is a branch of
the hyperbola, and when k # 1, the trajectory is the
Apollonius circle. Introduced into the enclosure
problem, assuming that a time step in the AUV and

target axial motion velocity size constant, the
encounter point P to reach the two distance ratio

Encirclemen
region

Maneuvering
escape region

Encirclement
region

Encirclement
region

Figure 1. Coverage of the escape boundary by the
capture area

that is the ratio of speed, fork =v,_ /v, ,that is, the

AUV on the target of the enclosure space that is the
encounter point P trajectory formed by the
Apollonius circle, the relevant parameters with the

AUV and the target's speed, which Vv, is the
enclosure of the AUV's speed size, v,_is the size of

tar

the target's speed. The center A (X,,Y,,Z,) and
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radius of the Apollonius circle r,, can be calculated

based on the position of the AUV and the target and
the velocity ratio, and the formula is as follows

Xa_kzxtar Ya_kzyar Za_kzzar
O Ynr2) = C e T e )
_ k\/(xa B Xtar)2 + (ya - ytar)2 + (Za ~ i ?
. i
(6)

The core idea of multi-AUV cooperative roundup
is to use the combination of multiple Apollonius
circles to construct a roundup area that can
completely cover the escape area of the target AUV,
S0 as to realize the success of roundup. And in the 3D
rasterized environment, the sign of successful
roundup is that all the target points that the target
may escape to in the next time step, i.e., the
neighboring raster with the resolution of sailing
distance of one-time step centered on itself, are all
included in the combined area of Apollonios spheres
formed by multiple AUVs.

2. Dynamic target rounding algorithm

2.1 IEKF algorithm

Based on the AUV kinematic model in (2), the
state transfer process is described a
X(k)=f(X(k-1),c(k-1)
()
Where, Kk denotes any sampling moment,
X (k) denotes the state vector of the AUV at the

moment K , and c(k —1) denotes the control input at

the momentk —10%.
The observation quantity is Z(k) =[d_,e,, 8] » Which

is the distance of the target from the device, the yaw
angle and the pitch angle measured by the device at
the time step. By establishing the state transfer
equation and observation equation of the AUV, the
EKF is able to describe the movement pattern of the
AUV at each time step and its relationship with the
observation data. Among them, the observation
equation can be described in the following form

Z(K) = h[X (k |k ~D)]

@®) _ _
JEX) +(y—y) (-2
hEX (k)] = | tan* (=)
Xk — XD
tan™( 2% )
| =) (YY)
©)

where h[x (k)] is a nonlinear function of state to
observation. x,y,z is the coordinates of the



observatory set to 0, 0, 0, X , Yy , Z is the
coordinates of the location of the AUV at the time.

To mitigate the impact of outliers on prediction
accuracy, the results are smoothed using an
Exponential Moving Average (EMA).

ZEMA(k) = (1_5) : Z(k) +0- ZEMA(k _1)

(10)
where, z_ . (k) is the smoothed value of the
momentK , Z (k) is the observed value of the moment,

o is the smoothing coefficient, Based on expert
experience™, its value should be between 0.9 and 1,
and the smaller the value of the more inclined to
recent observations, the larger the value of the
smoothing effect is stronger.

One-step state prediction of the target after
obtaining the observations
X(k|k-1)=F-X(k-1)
{P(k|k—1)=F-P(k—1)~FT+Q(k)
(11)
where X (k-1)is the state estimate at the previous

moment, F is the state transfer matrix, which is the
partial differential Jacobi matrix of the state transfer
equation f(x(k-1),c(k-1) , P(k-1) is the state
covariance matrix at the previous moment, which
represents the error range of the state estimate, and
Q(k) is the process noise covariance matrix at the

time, which represents the uncertainty due to the
unmodeled dynamics in the model®.

The update process follows:

K (k) =
P(k|k-1)-HT(k)-[HK)P(Kk|k-DHT (k) +R(K)]™
X (k) = X (k |k =1+ K () [Zeya (k) = Zeya (K]
P(k) =[1-K(K)HK)IP(k|k-1)

(12)
where p(k|k-1) is the predicted covariance matrix,
R(k) is the time-observed noise covariance matrix*),
the Jacobi matrix H (k) denotes the first-order partial
derivatives with respect to X(k), and 1 is the unit
matrix. The updating process of R(k)and Q(k)with is
as follows

{R(k)=(1—y)R(k-1)+7(akaI - HPKIk-DH)

Q(k) =(A- QK -1) + A&,&))

(13)
where £, is the innovation series, which measures the

deviation between forecasts and actual observations.
y Is an adaptive weighting factor, 1is an updating
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factor (0<2<1)P®! and the relevant parameters
are as follows

& = Zewa(K)—h(X (k| k -1))
1-p
1-p*

;/:

(14)

where n(X(k|k-1) is the observed value obtained
from the prediction and p is the scaling factor
( 095< <099 )P The settings of o and
A directly affect the update speed of R(k) and
Q(k)-A smaller update speed can make adjustments
smoother, reducing the instability of the Kalman gain
caused by rapid changes in R(k)and Q(k).

The whole prediction and updating process of
IEKF is shown in Figure 2. This method avoids the
limitations of the traditional EKF that relies too much
on the number of observations and static noise
settings, and allows the filter to adaptively adjust to
the real-time performance of the system, thus
providing more accurate state estimation.

|™" Updating process |

I
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} observations
|
|
|
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: Updating the noise
|

v i
|
|
|

covariance matrix
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smoothing ‘ Updating the error
I | f
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prediction | estimate

b t

Error covariance Calculate the
matrix prediction ‘L Kalman gain

(W  —— | W—  S—

Figure 2. IEKF's prediction and update process

I
|
|
|
|
|
|

L _* covariance matrix ‘

2.2 IGBNN algorithm

This study analyzes the GBNN updating process to
enhance the search efficiency of individual AUVs by
enhancing the global information dissemination
mechanism as well as improving the effectiveness of
external stimuli.

The GBNN consists of discrete Hopfield neurons.
In the 3D GBNN model, each neuron corresponds to
a discrete lattice in the configuration space and is
connected to only 26 neurons in its neighborhood,
which is considered as a spherical region of
radiusr_, the receptive field of the neuron [26]. The

weight of the connection between the neuron m and
the neuron n is shown in the following equation:

{eXp(—n p,-p)).|p.—p,
Wm,n =
01 pm - pn

<r
2 sen

2~ Ven
(15)



where |p —p | is the Euclidean distance between two
neurons, ;>0 is the attenuation factor®’), and the
connection weight w_is responsible for the delay

and attenuation of the information propagation, and
the connection between neighboring neurons is the
key to the propagation of global information by the
GBNN

From the point of view of a single neuron, a* is

the dynamic output of the neuron m, also known as
the neuron's activity value, is shown in the following
equation

at=g(li+ T w, 4

neN(m) '
(16)
where v () is the set of neurons within the receptive
field of the m-th neuron, g(0) is the transformation
function, and I is the external stimulus received by

the m-th neuron at moment t. In the GBNN model,
stimuli usually include inhibitory stimuli and
excitatory stimuli. Excitatory stimuli are related to
the relative positions of the encloser and the target.
Meanwhile, grids that do not meet the problem
constraints, such as those occupied by obstacles,
produce inhibitory stimuli as follows

e  mistarget
I} =| —e mis obstacle

0 others
17)
0 a<0
g(@)=qpa 0<ax<l
1 a>1
(18)

where e is a constant much larger than 1. The
transformation function g(a) causes the activity value

to decrease in an orderI%/ fashion with transmission
and0 < 8 <1 is constant*®!,

In the GBNN model, global information with the
target location is propagated through the connections
between neurons, and this unique propagation
mechanism embeds the global information into the
neighborhood reward of the GBNN, which enables it
to select a more optimal waypoint. However, the
propagation of information in the GBNN model
suffers from time delay and decay, and the dynamic
output computation of the neurons may also lead to
their tendency to fall into local optimal solutions. For
this reason, in this section, improvements are made in
terms of both the propagation process and external
stimuli, aiming to enhance the model's ability to jump
out of the local optimal solution, and thus improve
the performance of a single AUV in a roundup
mission.
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When performing a roundup mission, it will be
affected by ocean currents, which will change the
sailing speed and ultimately affect the roundup
efficiency. When performing the roundup task, the
current markers on the GBNN network must be taken
into account®. and the formula for the connection
weights can be rewritten as

P, — P,
ex T a1 I m M 2 T sen
L v p.— P
O’ pm - pn 2 > rsen

(19)
where v~ denotes the synthetic speed of AUV

sailing from the grid m to the grid n, and
V=V [V denotes the v " normalized value. and

velocity V_satisfy the following equation

M+ =20 v eos(v, Vo) = v |
(20)

where V_is the velocity vector of the ocean current
and V is the propulsive velocity vector of the AUV.

Compared with the original formula, this formula
takes into account the effect of ocean currents and
uses the sailing time of neighboring grids to
determine the connection weights between neurons
instead of directly using the Euclidean distances of
neighboring grids, which makes the algorithm more
realistic.

In addition, in the traditional GBNN algorithm, the
external stimulus relies only on the current position
of the target and the surrounding obstacles for path
planning. However, considering the complex changes
that AUVs may encounter in dynamic environments,
this study chooses to employ a confidence function to
adjust the external stimulus matrix in real time, thus
dynamically adjusting the path planning of AUVsS.
This approach enables the AUV not only to avoid
obstacles effectively, but also to move towards the
target quickly and efficiently.

The core formula of the confidence function is
shown as follows

bm :g'(Nm+Dm)+Gm

(21)
N,, =cos(Ax)
(22)
_|P=pal
D =e dist
(23)

where b_denotes the set letter value of the grid m,
N, is a direction function that describes the angular

relationship between the target and the current AUV
and guides the AUV toward the target, A« is the
angular difference between the target and the current



grid. D, is a distance function that gives an excitatory

stimulus based on the distance between the grid m
and the target, causing the AUV to choose the
direction that is the shortest distance from the target,

n—pnl, is the distance between the target and the grid

m, and dist_ is a constant that controls the range of
influence of the distance. G, is an indicator function

of whether the grid is occupied or not, and is set to -
10 if the grid is occupied, and O otherwise. £is a

constant used to weight the effects of and™.

Then the neuron activity value function can be
rewritten as follows

&, = 9o, +oW, .a;))
(24)
where the set letter value b' replaces the
conventional external stimulus I, o(w,, ,a; ) denoting

the result after a 3 x 3 x 3 receptive field and a
convolution with a step size of 1 is performed using
the pair.

Global information about target escape in the
network is propagated through the convolution
operation in each iteration. An insufficient number of
iterations may prevent the effective propagation of
global information, while too much convolution leads
to a significant increase in the computational
complexity of the algorithm. The number of
convolutions is calculated using a weighted average
in conjunction with the judgment model of the
Apollo circle as shown in the following equation.

¢ ax( 12|Aai'plar

. pai ~ Prar
T YA P

n,=m

cov

2 ,1)

2
(25)

where n;  denotes the number of convolutions at
time t, max() is the maximum function, || denotes
the downward rounding function, |Aai,pm|2 denotes
the Euclidean distance between the center of the

Apollonius circle of the i-th AUV and the target,
p, — p,, | denotes the Euclidean distance between
i 2

the location of the i-th AUV and the target, and 7 is
the raster resolution.

Performing n,  convolution on the
M,xM xM, image still has a high computational

complexity, which can be reduced by processing o()
as a global guide 6() if o ,a!) only used as a
global guide and does not directly determine the
shape of the trapping path.

First, an average pooling kernel of size SxSxS is
used to perform a pooling operation on a' with step

size s to extract the mean value of the inputs in each
receptive field. Then, multiple convolution
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operations are performed after calculating the number
of convolutions, and the resolution of the grid
becomes a multiple of the original resolution. Finally,
the convolved image is resampled by a bicubic
interpolation method to recover the element size.
This operation is called Mean Pooling Multiple
Convolution Resampling (MPMCR).

Observing the traditional GBNN update and
MPMCR processes from a convolutional point of
view, it can be easily seen that the traditional GBNN
model can only propagate global information
outward to a mesh during an update process.
Compared with traditional GBNN, MPMCR can
propagate global information to a farther network in
one update process, improving the ability of IGBNN
to jump out of the local optimum. In addition, the
time complexity of MPMCR is as follows

27ni, M

M, xM, xM,
O( co . y

S
In contrast, the baseline method computes the
dynamic output matrix via a single convolution with
a 3x3x3 kernel, resulting in a time complexity
of o27m, xM, xM,) .With the pooling kernel size set to

s=5, the MPMCR method’s
is O((%M)MX xM, xM,) .Compared to the baseline’s

5
time complexity o@7m,xM,xMm,) the MPMCR

method is less computationally intensive when
n,, <115, Boundary analysis shows n! is an integer

cov

between 1 and 6, ensuring the MPMCR method’s
time complexity is always lower than the baseline.

However, MPMCR still needs to avoid the problem
of easily falling into dead zones and resampling
oversized elements in the result matrix E'
Therefore, after each MPMCR, a normalization
process should be performed, i.e., regularization.

. E!
E( — - m
2E,

m
i=1

+2M, x M, xM,) (26)

time complexity

(27)
By combining the MPMCR and the processes
included in the (), the formula for the neuronal

activity value can be reconstructed as

a," =g(b, + (W, ,5))
(28)

2.3 Cooperation mechanisms

Unlike traditional allocation based solely on the
distance between the pursuers and the target, this
study takes the angle from each seiner to the marquee
position into account along with the distance. The
candidate positions were set as a total of 26 grid
coordinates adjacent to the grid where the target was
located, and when the three roundups simultaneously
occupied three of these 26 grids and satisfied the



Apollonius circle's decision condition, the roundup
was judged successful.

To ensure effective capture, this study employs the
artificial potential field method [30] to guide pursuers
toward optimal positions by adjusting their approach
angles. In the pursuit process, the enclosure farthest
from the target is the designated encloser, and its
movement is realized by adjusting the direction of the
combined force of the other two enclosers to ensure
that the combined force of these two enclosers points
in the direction of the designated encloser as much as
possible, so as to effectively drive the target to the
position of the designated encloser.

In the specific execution process, the applied force
can be simply set as the unit vector of the candidate
position pointing to the target position U, and uj,
then the combined force is the sum of the two unit
vectors, and the angle between the combined force

and the direction of the designated fencer is as
follows

FCtotaI =U; +U;
(29)
FC._. -u
@ = arccos(——al_—m _)
” FCoa ” ’ "urm "
(30)

where u_is the unit vector of the target pointing to
the specified seiner
u, = pa,m — Prar
| pa,m ~ Prar

(31)

In addition, the total distance is the sum of the
Euclidean distances between the enclosing AUV and
its corresponding marquee position, then the
objective function can be set as C

3
Da,mid = ;” Pa = Pa,mid "

(32)
C=(1-¢").—2md -+
( ) 3-dist,,, T

(33)

where p, ., is the coordinate of the marquee position
corresponding to the AUV, dist, is the maximum

size of the map, and €~'is the time decay factor. The
complete IEKF-IGBNN algorithm flow is shown
below in Figure 3.

Based on this objective function, traversing all
combinations of candidate locations and selecting the
point pairs that minimize the objective function while
satisfying the Apollonius circle decision condition,
the target location, where the rounded-up AUV is
heading to, can be determined.
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111.RESULTS AND DISCUSSION

In this section, we first compare the improved
algorithm in this paper with multiple baseline
algorithms in the same environment where multiple
obstacles are present to reveal the superiority of this
algorithm in terms of roundup efficiency. Subsequently,
we test the algorithm in environments with different
obstacles and current distributions to verify the
generalization ability of the algorithm. Finally, the anti-
interference ability of the algorithm is further verified
by testing under different sensor noise conditions.

finish

start

A 4
Update target

Determine if
hunting is

position complete
A 4
IEKF-based .
state estimation IGBNN algorithms
Update hunters
position
A4 %
Task allocation Calculate the
belief function
' -
Get a collection Calculation
of local tasks neuronal
activity
| ;
Figure 3. The running process of improving

algorithm

1. Experimental setup

The experimental scene is a 500 x500x500m square
region, which is finely divided into a 50x50x50raster
network with a resolution of 10m per grid, and four
obstacles are randomly distributed in the region,
whose lengths, widths, and heights are randomly
generated from 10m to 100m, and the experiment-
related parameters are shown in Table 1.

2. Algorithm validation

In order to prove the advantages of the IEKF-IGBNN
algorithm, a series of roundup algorithms such as the
original GBNN, GBNN-DIS, GBNN-RES, and GBNN-
CBBA are selected as the control group. The simulation
comparison of the roundup effect of all the above
algorithms is carried out under the same experimental
conditions, and the simulation results are shown in
Table 2 and Fig. 4-Fig. 8.

TABLE 1 EXPERIMENTAL PARAMETER SETTINGS

notation mean value
r/m Raster resolution 10
Vortex center (500,0), (500,500), (250,150)
x/m coordinates (0,300), (100, 550), (50, 50)
Q vortex strength -11,-1,1,1,-1
r/m vortex radius 60,80,60,120,80,120




Propulsion speed
va/(m/s) for hunters 1
Propulsion speed
Y /(/5) pfor targe? 0.5
Measurement of
P the scale factor of 0.99
the noise matrix
Update factors for
A process noise 0.1
matrices
Smoothness
o coefficient 0.9
Connection
n weight decay 0.95
factor
Transformation
B function decay 0.1
factor
G, Pena_lty for raster -10
m being occupied
Confidence
¢ function 0.6
weighting factor
S Mean pooling 5
kernel size

TABLE 2 IMPROVED ALGORITHM AND
BENCHMARK ALGORITHM EXPERIMENTAL

RESULTS
algorithm Average distance | Average time
of hunters of hunters

IEKF-IGBNN 451.6 516
GBNN CBBA 547.2 649
GBNN_RES 545.5 626
GBNN DIS 752.2 772
GBNN 1289.5 1457

® target

—8— hunter1

—8— hunter2

hunter3

Figure 4. The running result of improving algorithm

® target
=0~ hunter1
—8— hunter2

hunter3

Figure 5. The running result of GBNN_CBBA
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Figure 6. The running result of GBNN_RES
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Figure 7. The running result of GBNN_DIS

The experimental results show that the IEKF-IGBNN
algorithm performs well in dynamic target capture tasks,
with an average capture distance of 451.6 meters, which
is superior to all other algorithms. Compared to the
GBNN_CBBA algorithm, this distance has been
reduced by 17.5%; Compared with GBNN-RE, GBNN-
DIS, and traditional GBNN algorithms, it has reduced
by 17.2%, 40.0%, and 65.0%, respectively. In addition,
the time step of IEKF-IGBNN is 516, which is also the
shortest, reducing at least 17.6% compared to other
algorithms and 64.6% compared to traditional GBNN.
These results demonstrate significant advantages in
distance and time efficiency of the improvement,
demonstrating its efficiency and effectiveness in
dynamic target capture tasks.

® target
—@— hunter1
—— hunter2

hunter3

Figure 8. The running result of GBNN



2. Verification of generalization capabilities

To verify the generalization ability of the improved
algorithm, the overall map environment is altered by
randomly adjusting the position, size, and number of
obstacles within the map, as well as changing the
strength and direction of ocean currents, and the
experiment is repeated 50 times. During this process,
the initial positions of the roundup AUVs and the target
AUVs are kept constant to ensure the stability of the
experimental conditions. The operation results of the
improved algorithms and the wvarious benchmark
algorithms under 50 randomized experiments are shown
in Tables 3 and 4 and Figures 9 and 10.

From Table 3, it can be analyzed that the improved
algorithm has significant advantages over other
algorithms in terms of total sailing distance. Compared
to other algorithms, its average distance has decreased
by 20.38% to 53.85%, with the optimization of
traditional GBNN being particularly outstanding,
reaching 53.85%. In the worst case, the maximum
distance of IGBNN is 1706 meters, which is 25.34% to
59.33% lower than other algorithms; In the best-case
scenario, its minimum distance is 1269 meters, which is
5.51% to 53.21% less than other algorithms. In addition,
the data range of the improved algorithm is only 437
meters, far smaller than other algorithms.

From Table 4, it can be analyzed that the improved
algorithm also outperforms the other algorithms in
terms of time efficiency. Compared with other
algorithms, its average navigation time has been
optimized by 18.84% to 55.34%, the maximum
navigation time is 27% to 60% lower than other
algorithms, and the shortest navigation time has been
reduced by 5% to 54.5%. It is superior to the benchmark
algorithm in all dimensions, reflecting the superior
performance of the improved algorithm in terms of
capture efficiency and generalization ability.

TABLE 3 STATISTICAL RESULTS OF REPEATED
EXPERIMENT DISTANCE

Maximum | Minimum | Average
total total total
algorithm sailing sailing distance
distance distance traveled
(m) (m) (m)
IEKF-IGBNN 1706 1269 1455
GBNN_CBBA 3150 1632 2162
GBNN_RES 2390 1400 1872
GBNN_DIS 2285 1343 1827
GBNN 4194 2712 3153

TABLE 4 STATISTICAL RESULTS OF REPEATED
EXPERIMENT TIME

Maximum | Minimum | Average

algorithm sa_iling sa_iling dis_tance
time time time

(steps) (steps) (steps)

IEKF-IGBNN 629 496 552
GBNN CBBA 1137 618 797
GBNN_RES 909 549 705
GBNN_DIS 862 522 680
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From the box plot, it can also be seen that the
improved algorithm has lower median, upper and lower
quartiles than other algorithms in both distance and time,
and its box size is smaller, indicating that its
performance fluctuates less in different environments
and has higher stability.

Anti interference capability verification

Due to the inherent positioning errors of sonar in
underwater environments, research has shown that the
current sonar ranging accuracy is usually within the
range. Therefore, three simulation conditions are set: the
mean distance measurement error is 5m, 10m, 15m, and
25m, respectively, and the distance measurement error
variance is 1m2. The simulation experiments for each
condition were repeated 20 times to verify and
demonstrate the superior anti-interference ability of the
algorithm. The experimental results are shown in Tables
5-6 and Figures 11-12.

TABLE 5 STATISTICS OF AVERAGE TOTAL
DISTANCE TRAVELED UNDER
DIFFERENT MEANS WITH A VARIANCE
OoF 1 M® IN SENSOR MEASUREMENT

ERROR
Mean | Mean | Mean | Mean
algorithm error error error error
5m 10m 15m 25m
IEKF-IGBNN | 1369 | 1407 1430 1513
GBNN CBBA | 1945 | 2171 2258 2344
GBNN_RES 1697 | 1730 2063 2462




GBNN_DIS 1924 | 1838 1801 2148

GBNN 3232 | 3046 3161 3715

TABLE 6 STATISTICS OF AVERAGE TRAVEL TIME
UNDER DIFFERENT MEANS WITH A

VARIANCE OF 1 M? IN SENSOR
MEASUREMENT ERROR

Mean | Mean Mean Mean

algorithm error error error error
5m 10m 15m 25m

IEKF-IGBNN 531 541 551 573
GBNN_CBBA | 730 732 839 883
GBNN_RES 731 653 774 932
GBNN_DIS 692 703 664 779
GBNN 1243 1182 1239 1424
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The improved algorithm achieved an average total
distance of 1429.75 meters across sonar ranging errors
from 5 to 25 meters, significantly outperforming other
algorithms. Compared to the original GBNN, it has
reduced the distance by an average of about 56.5%;
Compared to GBNN_CBBA, GBNN-RE, and GBNN-
DIS, they decreased by approximately 34.4%, 28.1%,
and 25.8%, respectively. Especially when the accuracy
is low, the advantages of improving the algorithm are
more obvious. In terms of navigation time, numerically
speaking, the average navigation time of the improved
algorithm is 549 steps, which is consistently more than
54.2% lower than GBNN under different sonar ranging
errors, and 22.6% to 31.0% lower than other algorithms.

In addition, Experimental results demonstrate that the
proposed algorithm achieves a total navigation distance
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= GBNN

IGBNN
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RES
DIS
GBNN

fluctuation range of 144 meters and a total navigation
time fluctuation range of 42 steps, both indicating
excellent stability. In contrast, the GBNN_RES
algorithm exhibits a navigation distance fluctuation
range of 765 meters and a total navigation time of 279
steps, the poorest performance among all compared
algorithms, highlighting its high sensitivity to
measurement errors and lack of stability. Compared to
other algorithms, the proposed method shows a
significantly smaller fluctuation range, demonstrating
that the IEKF effectively mitigates the impact of sonar
detection errors, substantially reducing the influence of
measurement inaccuracies and enhancing encirclement
efficiency. In summary, the proposed algorithm exhibits
outstanding stability and robustness against interference.

4. Validation of Adaptability in Strong Adversarial
Ocean Current Environments

To rigorously validate the robustness of the improved
algorithm under strong ocean current conditions, we
conducted controlled experiments by fixing the
positions of obstacles and AUVs while solely varying
the intensity and direction of ocean currents to simulate
diverse current environments. Four distinct current
intensities (-2, -1, 1, 2) were selected, with positive
values representing counterclockwise vortex rotation
and negative values indicating clockwise rotation. Each
intensity level was tested through 10 repeated
experiments to ensure statistical reliability. The
experimental results for the improved algorithm and
baseline algorithms are presented in Tables 7-8 and
Figures 13-14, comprehensively demonstrating the
algorithms’ performance across varying current
intensities and directions.

TABLE 7 STATISTICS OF AVERAGE SAILING TIME
UNDER DIFFERENT OCEAN CURRENT

INTENSITIES
Vortex | Vortex | Vortex | Vortex
algorithm strength | strength | strength | strength
-2 -1 1 2

IEKF-IGBNN 562 516 583 637
GBNN_CBBA 631 581 909 872
GBNN RES 571 741 803 1072
GBNN DIS 628 528 886 1071
GBNN 1195 1157 1252 1896

TABLE 8 STATISTICS OF AVERAGE TOTAL SAILING
DISTANCE UNDER DIFFERENT OCEAN
CURRENT INTENSITIES

Vortex | Vortex | Vortex | Vortex
algorithm strength | strength | strength | strength
-2 -1 1 2

IEKF-IGBNN 1815 1720 1565 1724
GBNN_CBBA | 2045 2361 2073 2543
GBNN_RES 1921 1751 2169 2863
GBNN_DIS 2222 1914 2338 2247
GBNN 3580 3440 2926 2991

22




== |IGBNN CBBA  ==— RES == DIS == GBNN

4000

g B 8 8
a & S =]
e o S =4

Total travel distance(m)

3 @
e &
& B

8
=3

i i
i i
i Ia

Vortex strength

|
i i
i i
Figure 13. Distribution of Average Sailing Time

under Different Ocean Current
Intensities

The IEKF-IGBNN  algorithm  demonstrates
exceptional performance in both sailing time and total
sailing distance across varying ocean current intensities,
showcasing significant superiority. In terms of
travelling time, IEKF-IGBNN consistently achieves the
lowest values, reducing sailing time by up to 66.4%
compared to the baseline GBNN algorithm. Against
other algorithms, IEKF-IGBNN outperforms in all
vortex strength conditions, with particularly pronounced
advantages under strong currents. Moreover, its sailing
time exhibits minimal variation (121 time steps), far
lower than GBNN and other variants, highlighting its
remarkable stability and adaptability in dynamic marine
environments.
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Figure 14. Distribution of Average Total Sailing
Distance under Different Ocean Current
Intensities

Regarding total sailing distance, IEKF-IGBNN
consistently maintains the shortest distances, achieving
reductions of 42.4% to 50.0% compared to the baseline
GBNN. Compared to other algorithms, it saves 11.2%
to 33.1% in distance across all conditions, with superior
performance in strong current scenarios. Its distance
variation is exceptionally small (250 meters),
significantly less than GBNN and other variants, further
underscoring its robustness. From the error bars in the
figure, it is evident that the improved algorithm has
significantly shorter error bars compared to other
algorithms, demonstrating its higher stability and
reliability.

In summary, the IEKF-IGBNN algorithm exhibits
substantial advantages in optimizing both sailing time

il
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and distance, delivering significant reductions while
maintaining exceptional stability and adaptability across
diverse vortex strengths. Compared to the baseline
GBNN and other variants, IEKF-IGBNN excels in
efficiency, robustness, and navigational planning in
complex marine environments, making it the optimal
choice.

1VV. CONCLUSION

This study investigates dynamic target encirclement
by multiple AUVs in 3D underwater environments. We
developed an IEKF to address sonar detection errors,
significantly enhancing target position prediction
accuracy and system robustness. Furthermore, an
optimized GBNN improves path planning efficiency
through refined neuron activation and enhanced AUV
collaboration. Simulations confirm the effectiveness and
generalization of the proposed algorithms. However, the
study is limited by the absence of physical experimental
validation and its focus on single-target encirclement.
Future  research  should  prioritize  real-world
experimental validation, extend the framework to multi-
target encirclement scenarios, and investigate
distributed cooperative task allocation for swarm-based
operations.
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