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Abstract：Robust estimation has been extensively 
employed and developed in the integrated navigation 
of Global Positioning System (GPS) receivers and 
Micro-Electro-Mechanical System (MEMS) Inertial 
Measurement Unit (IMU). To further reduce or even 
eliminate the influence of abnormal measurements 
from GPS receivers/MEMS IMU, the range 
measurements of Ultra-Wideband (UWB) are 
introduced. This article proposes a GPS/MEMS 
IMU/UWB tightly coupled integrated navigation with 
robust Kalman filter based on bifactor. The proposed 
model consists of two main components: one is the 
detection of gross errors, which involves constructing 
an equivalent weight matrix based on bifactor weight 
elements; and another is estimation, from which the 
optimal estimation results are obtained. Finally, the 
simulated test and field test are carried out to verify 
the proposed model, and the effectively results of the 
new robust Kalman filter are drawn. 
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1 Introduction 

Global Navigation Satellite System (GNSS) 

receivers and Micro-Electro-Mechanical System 
(MEMS IMU) are commonly employed for providing 
position, velocity and attitude information for moving 
platform (Han and Wang 2017). Meanwhile, GNSS 
receivers have been widely used for vehicles 
navigating with the help of MEMS IMUs or other 
sensors, which can generally obtain sub-meter-level 
positioning accuracy in open-sky environments, it 
faces challenges in urban canyons, tunnels, bridges, 
and indoor areas where the GNSS signals will be 
interfered, cut off, or even unavailable (An et. al 
2019; Luo and Wang 2017). High-accuracy 
positioning results will be obtained from GNSS can 
reduce or eliminate the accumulated systematic errors 
over time associated with MEMS IMUs (Chen et. al 
2021). Ultra-Wideband (UWB) technology has been 
shown effective in compensating measurement errors 
and improving positioning performance of 
GNSS/MEMS IMU integrated systems (Zhang et. al 
2020a, 2020b; Wang et. al 2022; Zhong et. al 2020). 

Compared with the integration of GNSS and 
MEMS IMU, an integrated GNSS/MEMS 
IMU/UWB system (Chen et. al 2021; Zhang et. al 
2020a; Sun et. al 2022; Li et. al 2016; Jiang et. al 
2021) offers better control the influence of gross 
errors, and achieves a higher positioning accuracy (Li 
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et. al 2018). The Kalman filter is commonly used for 
integrated navigation to obtain optimal estimation, 
under the assumption of normal distributions for 
measurement and state vectors. Researchers have 
developed various models and systems to control the 
divergence of positioning errors and improve the 
reliability of state estimation, such as fading adaptive 
Kalman filtering model, factor graph, adaptive 
filtering model and robust estimation model (Luo et. 
al 2017; Yang et. al 2010). Sun et al. (2022) proposed 
a motion model-assisted GNSS/MEMS IMU 
integrated navigation system on the basis of a 
constant yaw rate and velocity (CTRV) model, 
significantly improving the horizontal accuracy. 
Zhang et al. (2020a) designed a federal Kalman 
filtering model for loosely coupled GNSS/IMU/UWB 
integration system, which can obtain the stable and 
reliable results, it also can effectively resist the 
influence of unreliable signals. Navarro et al. (2019) 
constructed a low-cost GNSS/INS/UWB integration 
system, it can operate in standalone mode when no 
additional infrastructure. Jiang et al. (2021) 
established a tightly coupled GNSS/INS/UWB 
integrated navigation system, which used the 
UWB/INS tightly coupled integration to correct the 
INS accumulation errors with range information from 
UWB. To eliminate or weaken the influence of gross 
errors, Li et al. (2016) proposed a tightly coupled 
GNSS/IMU/UWB integrated navigation system with 
a robust Kalman filtering model based on 
Mahalanobis distance, which improved the 
performance of integrated navigation system. Wang 
et al. (2016) proposed a tightly coupled 
GPS/INS/UWB cooperative positioning system, in 
which the UWB ranging information is used to 
augment the GPS measurements，which can eliminate 
the influence of gross errors. Although Yang et al. 
(2002) constructed a bifactor equivalent weight 
model based on measurement outliers for GPS survey, 
its applications in integrated navigation and 
positioning have been limited (Chen and Shen 2020). 

Based on this point, to explore the performance of 
GPS/MEMS IMU integrated navigation, we designed 
a GPS/MEMS IMU/UWB tightly coupled integrated 
navigation system with robust Kalman filter based on 
bifactor. Accordingly, this article focuses on 
analyzing the performance and positioning accuracy 
of GNSS/MEMS IMU/UWB integration system. 

2 GPS/MEMS IMU/UWB tightly coupled 
navigation system 

The dynamic model of GPS/MEMS IMU/UWB 
tightly coupled navigation system is expressed by the 
following MEMS IMU error equation 
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wherein δr 、δ v、δψ  stand for the error vectors 
of position, velocity and orientation,  respectively. 

enω  is the earth rotation angular velocity vector of 
the geographic coordinate system relative to the 
coordinate system, ieω  is the rotating angular 
velocity vector of the earth coordinate system relative 
to the inertial coordinate system, f  is the 
acceleration force vector and η  is the acceleration 
error vector, and ε  is gyroscope drift error vector 
during the random walk process. uη  and uε  are 
Gaussian white noise vectors. The generalized system 
model can be expressed as follows 

1X FX u−= +k k k            (2) 

wherein kX is an m×1 unknown state vector at 

time instant kt , F  is an n×m system transition 

matrix, ku  is an n×1 zero-mean Gaussian white 

noise vector, and the corresponding covariance 
matrix is Q . The predicted state vector is 

ˆX XF=k k            (3) 

The measurement model of GPS/MEMS 
IMU/UWB integrated navigation is defined as 
follows 
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wherein GPS
jP and GPS

jD  represent the pseudorange 

and Doppler measurements of the thj  GPS satellite. 
INS
jP  and INS

jD  stand for the predicted 

pseudorange and Doppler measurements of the thj  

GPS satellite by MEMS IMU, UWB
ir  is the UWB 

range measurement by two UWB units. INS
ir is the 

derivation calculation range by MEMS IMU. H  is 
an n×m measurement matrix, τk  is the 
measurement noise vector, which conforms to 
zero-mean Gaussian white noise with the covariance 
matrix R . The residual equations of the 
measurement vector and the predicted state vector are  

X̂V H Z= −k k k           (6) 

ˆ= −X XV X
k k k           (7) 

wherein the dimensions of XV
k

 and kV  are m and n, 

respectively. kX  is the predicted state vector with 

its covariance matrix 1/ −Σ kk , ˆ
kX is the currently 

estimated state vector, and Zk  is an n×1 
measurement vector with its covariance matrix kR .  

3 Bifactor robust estimation solution 

An improved standard Kalman filter, robust 
Kalman filter based on bifactor, has been developed 
using the weight matrix of the measured and 
estimated information. The Least-Squares cost 
function at the observation epoch k is given as 
follows (Wang et. al 2021)  

minVΣVVRV X/X =+=Ω −
−
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wherein P  is called an equivalent weight matrix, 
ijp  is an element of the bifactor equivalent weight 

matrix, iiγ  and jjγ  are the factors of adaptive 
equivalent weight elements. 

ij ij ijp p γ=            (9) 

ij ii jjγ γ γ=            (10) 

The robust Kalman filtering model based on 
bifactor consists of adaptive factor construction and 
iteration solutions. The IGG III model is introduced, 
and the adaptive factors iiγ  could be chosen as 
follows 
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wherein jjγ  is the same as iiγ , iv  is a standardized 
residual vector element for detection the presences of 
gross errors, when 0iv k„ , the gross errors exist. 

1k  and 0k  are two constants, usually chosen as 
1.0 ~ 1.5  and 2.5 ~ 8.0 . Then, we obtain the new 
robust estimation is obtained as follows 

k
TT

k LPAPA)(AX̂ 1−=           (12) 
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RP , the matrix ×m mI  stands for a 

m×m unit matrix. The corresponding covariance 
matrix of the estimated state vector is 
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posteriori variance of unit weight (Wang 2008, 
2009). 

4 Experiments 

To verify the effectiveness of the proposed 
technique, simulation and field tests were conducted. 
The field test was carried out on the roof of the 
Nottingham Geospatial Institute (NGI). 

4.1 The simulated test 

The simulated test was designed to evaluate the 
performance of the proposed model. A vehicle is 
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traveling along a road, and the movement model of 
the vehicle can be written as 
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wherein k  represents the epoch time, the 2000 
epochs of data were utilized to verify the proposed 
model, [ ]T

N E Nk Ex p p v v= , Np  and 

Ep  represent the position of the vehicle in the 

North and East directions, Nv  and Ev  represent 
the velocity in the North and East directions, T  
represents the sampling step size, kw  represents 

the process noise, and kv  represents the 

measurement noise. kw  and kv  obey Gaussian 

distributions, and ky  represents the measurement 
position of vehicle. The covariance matrix of the 
process noise is (4, 4,1,1)= diagQ , the covariance 
matrix of the measurement noise is 

(900,900)R = diag , the initial estimation error 

covariance matrix is 0 (4, 4,1,1)=P diag , and the 

initial state of the vehicle is 0 [1 1 0 0]Tx = . 

Table 1 RMSE of standard Kalman filter and robust 
Kalman filter (the simulated test) 

 North (m) East (m) 
Standard Kalman 

filter 43.86 60.12 

Robust Kalman 
filter (bifactor) 13.11 13.07 
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Figure 1 Trajectory of vehicle (true, standard and robust filters) 
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Figure 2 Position error of the vehicle in the North and East directions 

Figure 1 shows a simulated test. The position 
error of a vehicle in the North and East directions are 
given in Figure 2. In comparison with standard 
Kalman filter, the robust Kalman filtering model 
based on bifactor results in a better positioning 
performance. The Root Mean Squared Error (RMSE) 
of standard Kalman filter and robust Kalman filter is 
given in Table 1, which clearly demonstrates that the 
proposed model significantly improved positioning 
accuracy in the North and East directions by 70% and 
78%. 

4.2 Field test 

The performance of the proposed model has 
been evaluated via a field test, and we constructed a 
GPS/MEMS IMU/UWB tightly coupled integrated 
navigation with robust Kalman filter based on 
bifactor. The test consists of one MEMS IMU 
measurement unit, three UWB measurement units, 
and two GNSS receivers. One GNSS receiver is 
mounted on the carrier vehicle, while one UWB unit 

was fastened under the antenna with a known 
lever-arm, another GNSS receiver was set on the roof 
to act as the reference station, and other two UWB 
units were mounted on pillars on the roof of NGI, 

known coordinates, the B
1
UWr  and B

2
UWr ranges 

were obtained. The duration of the field test is 815 
seconds. The number of the tracked satellites was 
from 6 to 10, with an average is 9 satellites, which 
meets the basic positioning requirements. Figure 3 
illustrates the number of satellites tracked by the 
GNSS receiver. The detailed description is given in 
(Wang et.al 2016; Li et.al 2016). 

Table 2 RMSE form standard Kalman filter and 
robust Kalman filter (the field test) 

 North (m) East (m) Down (m) 
Standard 

Kalman filter 3.29 1.27 1.52 

Robust 
Kalman filter 

(bifactor) 
1.06 0.46 1.29 



 

119 

 

4.861 4.862 4.863 4.864 4.865 4.866 4.867 4.868 4.869 4.87

Time (s) 10 5

0

2

4

6

8

10

12

14

N
um

be
rs

 o
f s

at
el

lit
e

 
Figure 3 Number of satellites tracked by GPS receiver 
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Figure 4 Filed trajectory of carrier vehicle 
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Figure 5 Position error of standard Kalman filter 
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Figure 6 Position error of robust Kalman filter based on bifactor 

The simulated test verifies the effectiveness of 
the robust Kalman filtering model based on bifactor, 
and the filed test of GPS/MEMS IMU/UWB was 
conducted to evaluate the performance of proposed 
model. Figure 4 shows the field test of carrier vehicle 
in the NGI, with the reference trajectory represented 
by the red line, the trajectory estimated using the 
standard Kalman filter represented by the blue line, 
and the green line trajectory corresponds to the 

trajectory obtained using the robust Kalman filtering 
model based on bifactor. Figures 5 and 6 demonstrate 
the position error of two models in North, East and 
Down directions. RMSE of different filtering models 
is shown in Table 2，it clearly presents that the 
proposed model improved positioning accuracy in the 
North，East and Down directions by 68%, 64%, and 
15%, respectively. 
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5 Conclusion 

In this article, we proposed a robust Kalman 
filtering model based on bifactor for a GPS/MEMS 
IMU/UWB tightly coupled integrated navigation 
system. Through the simulated and field tests, the 
better positioning results were obtained with the 
proposed model especially in the presence of gross 
errors in the measurement processing. The proposed 
model effectively reduced the influence of the 
outlying measurements. However, it should be noted 
that this article focused on constructing a tightly 
coupled integrated navigation system and did not 
consider various scenarios such as sheltered 
environments and semi-sheltered environments, 
which will be addressed in future research endeavors. 
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