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Abstract—To investigate the vision-based autonomous landing
of fixed-wing aircraft, we propose a photorealistic simulation
platform that leverages ROS, Unreal Engine, and Pixhawk 4.
This platform adopts a software-in-the-loop model consisting
of rendering, control, communication, and sensor modules. To
achieve realistic rendering control, the seawater hydrodynamics
and fixed-wing aircraft dynamics are modeled. Based on the plat-
form, we create simulation scenarios under different weather and
disturbance conditions for autonomous landing of the aircraft
carrier. The platform solves the problem that datasets of related
scenes are difficult to collect and experiments are difficult to carry
out. To verify the developability of the platform, we design and
implement a runway line feature point extraction method (vision-
based pose estimation algorithm), and evaluate the performance
of the method under various conditions. Experiments show that
our software-in-the-loop platform enables vision-based algorithm
verification and supports simulation research for the autonomous
landing of fixed-wing aircraft.

Keywords—Photorealistic, Simulation platform, Fixed-wing air-
craft, Landing

I. INTRODUCTION

The evolution of aircraft landing on ships has undergone

various stages, starting with the Landing Signals Officer (LSO)

method, followed by the implementation of optical landing aid

systems and finally, the advent of all-weather landing systems.

In the early days of naval aviation, the LSO method was uti-

lized to guide aircraft during landing, however, this approach

was limited in its applicability due to the high speed of aircraft

during the landing process. The 1960s saw the introduction of

the Fresnel Lens Optical Landing System (FLOLS), which

continues to be in use today, however, its shortcoming lies in

the limited penetration and visibility of the light during cloudy

weather conditions. To address this issue, long-range optical

landing aid system [1] [2] was developed in the 1990s that uti-

lized the superior penetration and straightness of laser beams

to provide the pilot with landing information from a greater

distance. Simultaneously, the All Weather Carrier Landing

System (AWCLS) with a higher degree of autonomy has also

matured, with a precision tracking radar on the carrier deck

serving as its core component. The precision tracking radar

measures the aircraft’s motion and uses predictive estimation

methods, such as Kalman filtering and neural networks, to

compensate for interferences signals, such as deck motion, and

assist the pilot in completing the landing operation. Recently,

to address the challenges posed by unknown or GNSS-rejected

environments, and strong electronic interference, the landing

scheme has evolved from relying on single sensors to utilizing

a multi-sensor approach. Among these, vision-based landing

schemes have garnered increased attention from researchers

[3]. Vision-based autonomous landing involves the use of an

airborne camera to acquire image information of the target

and then, through image processing techniques, calculates the

relative attitude of the aircraft and the deck. The calculated

attitude information is then transmitted to the flight control

system to complete the autonomous landing process. Vision-

based autonomous landing offers advantages such as low cost

[4], high autonomy [5], and rich information [6].

Several institutions have undertaken research on vision-based
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landing and achieved noteworthy results. McCarthy et al. [5]

explored the feasibility of a vision-based landing scheme for

autonomous control and feedback. Zhang et al. [6] proposed

the use of airborne forward-looking camera-acquired images

to extract various navigation information, such as attitude

and position, through a significance analysis method based

on spectral residuals. Long et al. [4] analyzed the benefits

of vision-based landing from the perspectives of low cost

and anti-jamming capabilities. Additionally, they also dis-

cussed the design considerations for integrating vision-based

schemes with radar-based and other schemes for landing.

There have also been numerous studies dedicated to enhancing

the performance of algorithms for feature extraction and pose

estimation during landing [7] [8]. However, due to the absence

of the high-fidelity simulation platform, many of the current

algorithms for autonomous landing on aircraft carriers have

not been tested in a relatively realistic simulation environment.

The landing datasets utilized for testing purposes often have

limited views or lack images of the moving ocean, and are usu-

ally of a single type, precluding experimentation under varying

weather and disturbance conditions. Thus, the development

of a high-fidelity simulation platform would greatly benefit

research into vision-based carrier landing. Based on the above

considerations, the simulation platform for autonoumous land-

ing must have the following requirements: (1) It should reflect

the dynamic characteristics and environmental characteristics

of a real aircraft carrier as much as possible. (2)It should

support algorithm verification and be able to generate datasets

in different environments, e.g, different weather and different

disturbance conditions.

Based on the above motivation, we build a simulation platform

for autonomous landing of fixed-wing aircraft that has near-

realistic rendering and dynamic models. To achieve photore-

alism, we model the dynamics of seawater and fixed-wing

aircraft. This dynamic modeling simplifies the calculation

process and reduces the resource consumption of rendering

scenes on the premise of ensuring simulation accuracy. The

platform implements software-in-the-loop from sensor, com-

munication, control, and rendering modules. Finally, we use

the platform to make various datasets. Based on different

trajectories and weather conditions, we carried out the runway

line reconstruction method to achieve pose estimation.

One of the ideal trajectories of aircraft landing is shown in

Figure 1.

Ship

1000m

Miss approaching

152m

Fig. 1. Fixed-wing aircraft landing process diagram

The main contributions of our work are summarized as fol-

lows.

• We develop a photorealistic simulation platform for the

autonomous landing of fixed-wing aircraft, which enables

near-realistic rendering and dynamic models. This plat-

form implements software-in-the-loop from sensor, com-

munication, control, and rendering modules. We generate

autonomous landing datasets under various weather(rain,

fog) and disturbance conditions(random noise, horizontal

noise lines) based on this platform.

• To model a photorealistic simulation scenario, we im-

plement dynamic modeling for seawater and fixed-wing

aircraft in the proposed platform. Meanwhile, our mod-

eling considers the balance between photorealism and

operational efficiency.

• With various experiments on our proposed platform, we

demonstrate that the platform can be used to collect

aircraft carrier landing datasets under various external

conditions and support advanced algorithm development.

This solves difficulties associated with datasets creation

and simulation experiments in the field of fixed-wing

landing on aircraft carrier.

The remainder of this paper is organized as follows: Section

II introduces related work in the field of simulation platforms,

seawater dynamics modeling and pose estimation. Section

III introduces the architecture of the proposed simulation

platform. Section IV introduces the dynamic modeling and

implementation of seawater and fixed-wing aircraft. Section

V introduces the runway line reconstruction method. Section

VI describes the experimental portion of the study. Section

VII summarizes our work and proposes future work.

II. RELATED WORK

Aircraft simulation platform. Due to their excellent devel-

opability, most simulation platforms are based on ROS using

Linux systems [9] [10] [11]. Tim et al. [12]developed a fixed-

wing simulation platform. It is a classic project often used

to teach novice engineers how to develop drone simulation

platforms. However, it lacks the implementation of high-level

algorithms. Xiao et al. [13]implemented a powerful UAV sim-

ulation platform XTDrone which is based on ROS and PX4.

This platform supports SLAM algorithms such as VIO, as well

as multi-UAV path planning. However, Gazebo’s rendering

falls short of photorealism. Shital Shah [14] et al. completed

a great simulation platform AirSim, which combines the

excellent visualization capability of Unreal Engine with its

own dynamics and control system. However, AirSim is not

suitable for all scenarios due to its limited vehicle and drone

models. For example, it only supports quadrotor aircraft and

does not implement a fixed-wing dynamic model. Integrating

the previous work, we complete a photorealistic simulation

platform for the autonomous landing of fixed-wing aircraft.

Dynamics modeling. In the field of sea surface dynamics

modeling, modeling and animating the ocean’s surface, mainly
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Fig. 2. Platform architecture

TABLE I
DISPLAY FORM OF AIRCRAFT CARRIER LANDING PLATFORM SUPPORT FUNCTIONS

Weather simulation Interference simulation Customizable dynamics model Track control Supported sensors

rain, fog, snow random, horizontal fixed-wing, quadrotor real-time, pre-planning camera, IMU

1 Random is Gaussian random noise. The pixels in a unit area share the same noise value that satisfies the Gaussian random distribution.
2 Horizontal is the horizontal noise line. The horizontal noise lines increase the noise area on the horizontal line.
3 The fixed-wing dynamic model has now implemented the Cessna C-172.
4 Real-time track control relies on the keyboard. Meanwhile, the pre-planning of trajectories relies on QGroundContronl.

rely on two approaches: 1) the approximation of ocean dynam-

ics with parametric, spectral or hybrid models and the use of

empirical laws from oceanographic research. and 2) physics-

based methods that use Navier–Stokes equations to represent

breaking waves and, more generally, ocean surfaces near the

shore. For example, Mark et al. [15] proposes different models

for global ocean modeling at different resolution requirements.

The model can simulate climate change and eddy current

activity. However, it cannot be used for rendering pipelines

and simulation scenes due to their computational complexity.

Considering the balance between photorealism and operational

efficiency, we decided to use the sea surface height function

[16] to simulate the ocean surface and ship motion. In the

field of fixed-wing dynamics modeling, there are many mature

theories and models. We chose the most classic one, Cessna

C-172 [17]

III. SIMULATION PLATFORM

In this section, we first describe the structure of the platform.

Then, we introduce the modules that make up the platform in

detail, such as the rendering module, control and communica-

tion module, and sensor module.

A. Platform architecture

Table I shows the functions currently supported by our plat-

form. Figure 2 shows the detailed architecture of the simula-

tion platform. The platform contains rendering, communica-

tion, control, and sensor modules. Among them, the commu-

nication module mainly uses the Mavlink protocol and topic

communication. The bottom layer motor of the control module

is simulated by PX4 SITL, and the upper QGroundControl is

used to plan the flight path of the aircraft. XTDrone is used

for SLAM algorithm development. The aircraft flight status is

sent to Gazebo for display. The rendering module reads the

aircraft states from Gazebo and synchronously displays them

in the scene simulated in Unreal Engine. The sensor module

mainly includes the camera. The platform can feed back the

pose information of the sensor module to the rendering module

through the control and communication module. The above

modules construct a software-in-the-loop pipeline.

B. Rendering module

1) Rendering in Unreal Engine: Modern visual engines, such

as Unreal Engine, exhibit far better visual performance than

Gazebo, which is used for robot simulation display on the

Linux platform. An important reason is that the former realizes

ray tracing and physics-based rendering. We are able to sculpt

realistic models in professional modeling software such as

Blender. We can provide normal maps, specular maps, and

noise maps to render models and obtain near-realistic materials

[18].

C. Control and communication module

The underlying flight control and dynamics model are imple-

mented based on PX4. The upper-layer communication scripts,

control algorithms, and state estimation are implemented by

XTdrone. The communication between the aircraft and the
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simulation scene in Gazebo is realized through the Mavros

module of ROS. Topic communication is used between nodes,

and the specific message format can refer to [13]. At the same

time, we realize point-to-point flight control and modification

of flight parameters through QGroundControl.

D. Sensor module

A real camera has many parameters, such as external pa-

rameters, internal parameters, and distortion. Therefore, the

parameters of the simulated camera used by the platform are

similar. The internal parameters of the camera are:

fx = fy =
Width/2

tan(fov/2)
(1)

K =





fx 0 Width
2

0 fy
High

2
0 0 1



 (2)

In the formula, width and high are the length and width of the

photo, and fov is the camera field of view.

The camera distortion parameters default to 0, which can be

customized in [14].

IV. DYNAMICS MODELING

In this section, we introduce the principles and implementation

of seawater dynamics modeling and fixed-wing dynamics

modeling. The state variables used in the derivation process

can be found in Table II.

TABLE II
THE VARIABLES USED IN THE DERIVATION PROCESS

Variables Description

ρ, u, p Fluid density, fluid velocity and pressure

µ, φ, g Fluid viscosity, velocity potential, gravitational acceleration

U U = gh is the gravitational potential of the fluid
h is the sea level

k The wave vector, which points in the direction of

the motion of the wave, k =
2π
λ

, λ is wavelength

ι ι = v2

g
,v is the wind speed

ω,w,A Angular frequency, wind direction, seawater amplitude

θ θ is theangle between wave vector and wind direction

F i Inertial coordinate system(North-East-Down)

F v Aircraft coordinate system as Figure 3(a)

Aircraft-1 coordinate system as Figure 3(b).

F v1 The F v1 coordinate system is obtained by rotating F v

coordinate system around the Kv-axis by an angle ψ

Aircraft-2 coordinate system as Figure 3(c).

F v2 The F v2 coordinate system is obtained by rotating F v1

coordinate system around the jv1-axis by an angle θ

F b Body coordinate system as Figure 3(d)

Pn, Pe, Pd The inertial north, east, down of the MAV along

the ii, ji, ki axis in the F i coordinate system

u, v, w velocity along ib, jb, kb axis in F bcoordinate system

φ, θ, ϕ Roll, Pitch, Yaw angle

p, q, r Roll, Pitch, Yaw velocity along the ib, jb,kb axis

in the F bcoordinate system

A. Seawater hydrodynamic modeling

In the selected scene, the datasets images are mostly images of

the ocean, so it is important to render high-fidelity seawater.

We make the following assumptions:(1) Seawater is an incom-

pressible fluid. (2) The current of seawater does not cross. (3)

The density of seawater is constant. (4) Turbulence is ignored.

From the Navier-Stokes equation and the fluid continuity

equation, under the above assumptions, the mass conservation

and momentum conservation constraints of seawater can be

obtained:
{

∂φ
∂t + 1

2 (▽φ)
2 = −U − p

▽2φ = 0
(3)

According to plane wave theory and substituting into the

directional wave spectrum (Philippe spectrum), combined with

the empirical formula of ocean statistics [19], the approximate

solution of the sea surface height can be obtained:

h(x, t) =

√

A

2
(εr + iεi)

∑

k

|k · w|

k2
e

i
kι (4)

where x are sea level coordinates and εi, εr ∼ N(0, 1) are

normally distributed random numbers. For a more detailed

proof of the seawater height function, refer to [16]. Then,

we use the height function in Unreal Engine to simulate

fluctuating sea surface.

B. Fixed-wing aircraft dynamics modeling

The coordinate systems we used are shown in Figure 3, in

which Figure 3(e) shows the definition of the aircraft motion

axis. For fixed-wing aircraft, the dynamic system is highly

relative to the control system.

There is a relationship of :

Rb
v(ϕ, θ, ψ) = Rb

v1(ϕ)R
v2
v1(θ)R

v1
b (ψ), and the transformation

matrix from the aircraft coordinate system F v to the body

coordinate system F b is:

Rb
v(ϕ, θ, ψ) =

[

cθcψ cθsψ −sθ

sϕsθcψ − cϕsψ sϕsθsψ − cθcψ sϕcθ

cθsθcψ + sϕsψ cϕsθsψ − sϕcψ cϕcθ

]

(5)

By linking the translation velocity and position, the constraints

of position can be obtained:

d

dt

[

Pn

Pe

Pd

]

= (Rb
v)

T

[

u

v

w

]

(6)

When the plane is performing translational motion, combined

with Newton’s second law, the force and velocity in body

coordinates, as shown in Figure 3(d) can be expressed as:

m(
dVb

g

dtb
+ ωb

b/i × V b
g ) = f b (7)

where V b
g = (u, v, w)T ,ωb

b/i = (p, q, r)T .
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(a) aircraft coordinate (b) aircraft-1 coordinate (c) aircraft-2 coordinate (d) body coordinate (e) motion axis

Fig. 3. Definition of the coordinate systems

and f b = (fx, fy, fz)
T represents the sum of all external forces

in the body coordinate system. After substituting Formula (7)

for simplification, we can obtain the velocity constraints:

d

dt





u
v
w



 =





rv − qw
pw − ru
qu− pv



+
1

m





fx
fy
fz



 (8)

In the same way, combined with the angular momentum and

angular velocity projection, the constraint of the aircraft’s

rotational motion can be obtained as:

d

dt





p
q
r



 =





Γ1pq − Γ2qr + Γ3l + Γ4n
Γ5pr − Γ6(p

2 − r2) + m
Jy

Γ7pq − Γ1qr + Γ4l + Γ8n



 (9)

where:



















Γ1 =
Jxz(Jx−Jy+Jz)

Γ ,Γ2 =
Jz(Jz−Jy)+J2

xz

Γ

Γ3 = Jz

Γ ,Γ4 = Jxz

Γ ,Γ5 = Jz−Jx

Jy

Γ6 = Jxz

Jy
,Γ7 =

(Jx−Jy)Jx+Jxz2

Γ ,Γ8 = Jx

Γ

Γ = JxJz − J2
xz

(10)

and:

J =





Jx −Jxy −Jxz
−Jxy Jy −Jyz
−Jxz −Jyz Jz



 (11)

where J is the rotational inertia matrix of the aircraft, in

which the diagonal elements Jx, Jy, Jz are inertial momentum,

and the off-diagonal elements are inertial products. The above

equations (6)(8)(9) give the fixed-wing aircraft’s kinematic and

dynamic constraints of 6-DOF and 12-states, respectively. The

detailed derivation process can be found in [12]. Numerical

solvers that simulate rigid body dynamics use the open dy-

namics engine(ODE) [20].

V. VISION-BASED POSE ESTIMATION ALGORITHM FOR

PLATFORM VERIFICATION

In this section, we first introduce the algorithm pipline for esti-

mating the aircraft attitude in the fixed-wing landing scenario.

Next, we briefly describe the implementation details and code

of the algorithm.

A. Method and algorithm pipeline

The pipeline design of our method is shown in Figure 4. First

we need a target detection algorithm to process the image

frames of the datasets to obtain the region of interest (ROI)

of the aircraft carrier. In view of the requirement for real-time

operation during the landing process, the target detection of the

first step of the algorithm must not drag down performance.

The simulation environment utilized in this study has a render-

ing pipeline established in Unreal Engine, yielding a maximum

output frame rate of 60 frames per second (FPS). As a result,

it is necessary to select a target detection algorithm with

sufficient operational efficiency, specifically, a rate greater than

60 FPS. After conducting a thorough evaluation, YOLOv5 is

deemed an appropriate choice, as it has a maximum frame

rate of 140 FPS and demonstrate satisfactory performance in

detecting small targets. Next, we binarize the ROI and perform

edge detection and corner extraction on the binary image.

Then, we use a priori infomation to obtain the priori region

of the runway line and use this region to filter out the corner

points. Finally, we use the corner points to reconstruct the

new runway line, find the endpoints, and run the Perspective-

n-Point algorithm [21] to determine the pose estimation. The

algorithm pipeline is shown in Algorithm 1.

Edge filtering

 Method pipline 

ROI 

detection

Edge detection

Hough transform

The priori 

region of 

runway 

line New 

runway 

line  

Pose 

estimation

divide

reconstruct
Feature 

points

Filtered 

edge

Corner detection
Selected 

corner

select

Fig. 4. Pipeline of the proposed method

B. Details of the algorithm

After we obtain the region of interest(ROI) of the airport

runway, we also get the pixel height and width of the aircraft

carrier in the picture, which are recorded as Height and Width.

After preliminary experiments, we find that due to blurry

pictures in the ROI area and many interference lines, the edge

detection has the following problems: (1) The detected runway

edge is not a complete straight line but is instead composed

of multiple small line segments oriented in slightly different

directions; (2) the edges of other parts of the carrier can also
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Algorithm 1: Method pipeline

Data: datasets collected based on the platform

Result: Pose of Euler Angles

while 1 in all frames do

// In this example we use YOLOv5

Object Detection;

threshold() and medianBlur();

Canny() HoughLinesP();

SelectEdge() and SetArea();

img = cornerHarris();

Normalize();

for pixel in img do
if (pixel.color > threshold and is inarea(pixel)

== True) then

add pixel to Points[];

end

end

// New runway line fitting

Reconstruction::RANSAC(Points[]);

// Pose estimation

SolvePnP();

end

be detected, which introduces noise to the runway line edge

detection. Based on the above facts, we decided to jointly use

Canny [22] operator edge detection, Hough Transform [23],

and Harris corner detection [24].

The constraints we use to filter runway lines are:

{

θǫ(θmin, θmax)

Lǫ(Lmin, Lmax)
(12)

As shown in Formula (12), θ is the horizontal angle of the

line, where θmin and θmax are the angle ranges of the aircraft

carrier runway line under the current trajectory. L is the length

of the line, where Lmax is the maximum length. According

to the runway line length of the real model of the aircraft

carrier, Lmax = 0.6∗Width ( Width is the width of the ROI),

and Lmin is the minimum length of the edge line. We take

a empirical value for the minimum length. For each edge of

the runway line chosen, we establish a rectangle where the

rectangle is oriented along the direction of the edge. The ideal

runway area can be obtained by superimposing all rectangles.

This step is shown in Figure 5.

C. Runway line reconstruction

We use a priori region, which is shown in Figure 5, to

filter corners and group them into sets {Sa}, {Sb}. Then we

use the RANSAC algorithm to mitigate the outliers.As long

as the new runway line is constructed, we also obtain the

endpoints of the runway line. We denote these endpoints

as P0, P1, P2, P3. Because the camera intrinsic matrix K is

known, the real coordinates and the accurate pixel coordinates

The edge of the runway 

line in the actual scene

The priori region of 

runway line that we 

genarate

The reserved straight line

The straight line that does 

not meet the conditions

Fig. 5. Edge selection and runway division

of the four points P0, P1, P2, P3 are also known, and we apply

the Perspective-n-Point algorithm to estimate the camera pose.

VI. EXPERIMENTS

In this section, we first introduce the software and hardware

configuration. Then, we show the details of the simulation

environment construction. Next, we describe the experimental

steps of the algorithm. Furthermore, we conduct experiments

under different weather conditions and trajectories and eval-

uate the performance of the algorithm in different situations.

This demonstrates that our platform can support experiments

under a variety of conditions and further supports algorithm

development and verification.

A. Configuration

1) Software: The software environment is Ubuntu 18.04,

Python version 3.7.2, AirSim version 1.7.0 [14], Unreal Engine

4.25 [25], ROS-neotic [26],PX4, Gazebo9.1, QGroundControl,

and XTDrone [13].

2) Hardware: The hardware equipment used in this exper-

iment includes an Nvidia RTX2060 GPU and an Intel(R)

Core(TM) i7-10875H CPU @ 2.30GHz.

B. Construction details of the aircraft carrier fixed-wing land-

ing environment

In this section, we briefly describe the simulation environment

components.

1) Construction of a photorealistic sea: Using the height

function in formula 4, we can generate the height spectrum in

Unreal Engine and then obtain the offset spectrum. Knowing

the offset spectrum, we implement IFFT to obtain the (x, y, z)

offset. The offset is superimposed to obtain the offset texture

and then the normal texture can be calculated through the

offset texture. Finally, we use the normal texture for rendering.

This process is shown in Figure 6. Considering the aircraft

carrier as a rigid body with a center of mass, and assigning

the offset in the Z direction of one point to the center of mass,

the vibration of the aircraft carrier deck at sea can be roughly

simulated. In addition, to get the photorealistic seawater in

Unreal Engine, we also need to set the water depth, caustics,

and foam. The final built sea surface is ideal (without shoals,

edges, and rapids), as shown in Figure 7.
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height spectrum

offset spectrum 

Dx

offset spectrum 

Dz

offset spectrum 

Dy

normal texture

Fig. 6. Normal texture of the generated seawater

Fig. 7. Ideal sea rendering in Unreal Engine

2) Other details of the aircraft carrier fixed-wing landing

environment: The prototype of the aircraft carrier used in

the simulation is the Nimitz Class Aircraft Carrier, as shown

in figure 8(a). The fighter prototype used for landing is the

Lockheed Martin F-35 Lightning II, as shown in Figure 8(b).

In addition, to simplify the experiment, for the fixed-wing

dynamic model we temporarily use the Cessna C-172.

(a) Nimitz Class Aircraft Carrier (b) Lockheed Martin F-35 Light-
ning

Fig. 8. Aircraft carrier and fixed-wing aircraft prototype display

3) The trade-off between photorealism and operational effi-

ciency: Datasets rendering supports various resolutions (360P,

480P, 1080P, 2K, 4K). The higher the resolution is, the higher

the computing power required for rendering. The relatively

simple dynamic modeling of the sea surface and fixed wings

can significantly reduce the computing power requirements for

rendering and improve the frame rate performance, but it will

lose the realism of the picture. Table III shows the relationship

between the frame rate and resolution under the current

experimental environment. In this table, we compare our

platform’s fixed-wing landing scenario, the default scenario in

Gazebo, and the Airsim scenario based on our platform with

the fixed-wing dynamics removed. Obviously, compared to

Gazebo, we sacrifice operating efficiency for the improvement

of photorealism. At the same time, the frame rate of our

platform is not much different from that of native AirSim

at high resolution. This means that the platform achieves the

need for a customizable fixed-wing dynamic model without

sacrificing operational efficiency. In addition, the frame rate

performance of the current environment at high resolution

(1080P) can meet most of the experimental requirements.

TABLE III
THE FRAME RATE PERFORMANCE OF OUR ENVIRONMENT UNDER

DIFFERENT RESOLUTION REQUIREMENTS

Resolution 480P 720P 1080P 2K No-re Fixed-wing

Ours 39 34 15 7 20 X

Gazebo 100+ 84 67 NULL 60 X

Airsim 41 36 16 7 23 ✘

1 The unit of frame rate is FPS. When rendering the datasets, the
environment is not displayed in real time.
2 No-re refers to the frame rate at which the platform is running without
rendering the datasets.
3 NULL indicates that the current scene cannot perfectly support the
condition.

C. Vision-based pose estimation algorithm implementation

In this part, we control the fixed-wing aircraft to fly a fixed

trajectory in QGroundControl and generate datasets. Subse-

quently, we implement our algorithms based on the above

datasets and analyze the results of the experiment.

1) Flight demonstration: We show the entire process of a

fixed-wing aircraft from take-off to landing along a fixed

trajectory in a demo video. The flight trajectory is controlled

by QGroundControl. The coordinates of the ideal flight landing

point in the Unreal Engine world scene are (0, 0, 24.3) (the

above coordinate units have been converted to meters). Figure

9(a) shows the trajectory of the aircraft. The landing algorithm

uses the PX4 default method AUTO LAND. The dynamic of

the fixed-wing aircraft uses the classic Cessna C-172 [27].

Figure 9(b) shows the flight demonstration with the depth

image, camera image and semantic segmentation image.

(a) QGroundControl (b) Unreal Engine

Fig. 9. The trajectory shown in QGroundControl and the corresponding flight
process in Unreal Engine

2) Datasets generation: For the multiconditional experiments

in the next section, we generate datasets of fixed-wing aircraft

landings on the deck of an aircraft carrier under different

trajectories, weather(rain, fog) and interference conditions

(random noise, horizon noise lines), as shown in Table IV.

3) Vision-based pose estimation algorithm: Figure 10 shows

the complete pipeline for runway line feature extraction. Con-

sidering the layout space, the pictures, except for Figure 10(a)

, only show the region of interest. Among them, Figure 10(a)

is the YOLO recognition result, Figure 10(b) is the binarized

image, Figure 10(c) is the result of the edge detection and

Figure 10(d) is the line detection based on the edge detection
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TABLE IV
THE FORMAT OF THE DATASETS CONFIGURATION

Size TimeStamp POS X POS Y POS Z

210 168988397609 5.27 -1.945 -9.99

Q W Q X Q Y Q Z Condition

-0.02542 0.02811 0.001381 -0.999 rain, fog, noise

image. Figure 10(e) is the corner detection result, the red

dots are the points used for RANSAC. Figure 10(f) is the

runway line fitting result. The algorithms effectively extract

the features of the runway line in the distance.

(a) region of interest

(b) (c) (d) (e) (f)

Fig. 10. The whole process of runway line feature extraction using the vision-
based pose estimation algorithm

4) Pose estimation: Based on the extracted feature points with

known world coordinates and pixel coordinates, we run the

Perspective-n-Point algorithm. We compare the pose estima-

tion and the ground truth in pitch, roll, and yaw in Figure 11.

When the aircraft is diving and descending towards the aircraft

carrier, the error in the pitch and roll directions is between 5

degrees, but the error in the yaw direction is higher than 10

degrees. At the same time, as time progresses, as the aircraft

approaches the aircraft carrier, the error of pose estimation

tends to decrease. Obviously, it can be seen that the trend of the

curve is consistent with the ground truth, which indicates that

the feature points we extracted are valid. However, our method

for pose estimation has better performance in the near space,

but the accuracy decreases in the distance. This is because

the Perspective-n-Point algorithm is not sufficiently accurate

with fewer points, and we do not utilize multisensor fusion to

design feedback for the elimination of errors.

D. Vision-based pose estimation algorithm under various con-

ditions

We design two different flight trajectories. The landing points

of both trajectories are (0, 0, 24.3). The first trajectory lands

directly on the aircraft carrier, and the start recording point

is (0,1000, 153), while the second trajectory lands on the

side of the aircraft carrier, and the start recording point is

(200, 1000, 153). Table V shows the performance of the

algorithm under different weather conditions(normal, rain,

fog), different interference conditions (normal, random noise,

horizontal noise lines), and different trajectories (trajectory I,

trajectory II). The criteria Ps, ∆error for evaluating the quality

of feature point extraction follow the formula:

{

Ps = Ns/N

∆error = 1
n

∑n
i

√

(xi − x)2 + (yi − y)2
(13)

where Ns is the number of datasets from which feature

points are successfully extracted, and N is the size of the

datasets. Meanwhile, (xi, yi) are the pixel coordinates of the

extracted feature points, and (x, y) are their corresponding

real pixel coordinates. n is the set of extracted feature points.

Furthermore, we present a set of representative recognition

images in Fig 12 to show the influence of different external

conditions on the algorithm.

TABLE V
PERFORMANCE OF THE ALGORITHM UNDER DIFFERENT CONDITIONS

Trajectory Weather Interference Ps ∆error Degree

I(facing) normal normal 0.829 5.23 0
I(facing) normal random 0.814 35.9 3
I(facing) normal horizontal 0.819 24.2 2
I(facing) rain normal 0.543 7.93 2
I(facing) fog normal 0.362 17.7 4
II(oblique) normal normal 0.733 12.4 1
II(oblique) normal random 0.700 44.7 4
II(oblique) normal horizontal 0.719 39.9 3
II(oblique) rain normal 0.476 18.6 3
II(oblique) fog normal 0.333 22.5 5

1 In Trajectory I, the aircraft is facing the aircraft carrier. While, the
aircraft in trajectory II is on the oblique side of the aircraft carrier.
2 Ps represents the runway feature points extraction success rate.
3 ∆error represents the feature point average pixel error.
4 normal is the ideal situation with no weather disturbances or noise.
5 Random is Gaussian random noise. Random noise is Gaussian random
noise. The pixels in a unit area share the same noise value that satisfies
the Gaussian random distribution.
6 Horizontal is the horizontal noise line. The horizontal noise lines increase
the noise area on the horizontal line.
7 Degree is a qualitative reference compared to ideal, describing the effect
of trajectory, weather, noise, etc. on algorithm performance. Degree is
divided into 5 levels from 0 to 5.

The results in Table V and Fig 12 show that the trajectory,

simulated weather, and interference noise all affect the extrac-

tion of runway line feature points for the algorithm. From the

perspective of weather, in rainy conditions, raindrops block

the target, which reduces the success rate of feature point

extraction, but the accuracy of point extraction is not affected.

However, in foggy weather, the visibility in the environment

is reduced, which has a great impact on both target detection

and feature point extraction. Next, from the perspective of

noise, under random noise conditions, the picture distortion is

serious, and the success rate of feature point extraction remains

unchanged, but the accuracy is greatly reduced. Compared

with random noise, the horizontal noise lines perform better

because the noise only exists in the horizontal direction. In

addition, due to the threshold setting inside the algorithm, the

different trajectories selected will also affect the performance

of the algorithm.
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(a) Ground truth vs estimated pose in roll (b) Ground truth vs estimated pose in pitch (c) Ground truth vs estimated pose in yaw

Fig. 11. Comparison of the pose estimation results under three rotation angles

(a) Normal conditions

Recognition resultRandom noise

(b) Random noise

Recognition resultRain

(c) Rain

Recognition result

(d) Fog

Recognition result

horizon

(e) Horizon noise lines

Fig. 12. The performance of the algorithm under different conditions

Fig. 13. Pose estimation results for various situations in trajectory II

The figure 13 demonstrates the aircraft carrier landing pose

estimation results in trajectory II (To facilitate analysis, we

apply mean filtering to the pose estimation results). The pose

estimation results are compared under different interference

scenarios, including normal, foggy, rainy, horizontal noise,

and random noise. It is observed that the accuracy of feature

point extraction significantly impacts the accuracy of the pose

estimation results. Under normal conditions, where the feature

point extraction accuracy is high, the pose estimation results

are in good agreement with the ground truth value. Conversely,

in foggy weather conditions with the lowest extraction ac-

curacy of feature points, the pose estimation results deviate

the most. Furthermore,Table VI displays the absolute error

of the pose estimation results in each direction. When the

accuracy of feature point extraction is low, the results of pose

estimation will lose their reference significance. Hence, to

improve the accuracy of pose estimation, it is recommended

to use more feature points to solve the pose and select a better

pose estimation algorithm.

Thus far, we have completed the design, implementation, and

evaluation of the vision-based pose estimation algorithm on

the photorealistic simulation platform.

111



TABLE VI
POSE ESTIMATION ERROR FOR VARIOUS SITUATION

Trajectory Weather Interference ∆in Roll ∆in Pitch ∆in Yaw

II normal normal 4.23 6.91 2.64
II normal random 12.78 17.23 7.33
II normal horizontal 8.44 9.14 9.61
II rain normal 4.55 7.44 3.95
II fog normal 23.11 34.61 45.89

1 This table provides a complementary error analysis of the pose estima-
tion results presented in Figure 13.
2 The dataset used for test comprises 150 frames.
3 ∆ denotes the average of the absolute error between the estimated and
true attitude values.

VII. CONCLUSION AND FUTURE WORK

In this paper, we develop a photorealistic simulation plat-

form for the autonomous landing of fixed-wing aircraft,

which has near-realistic rendering and dynamic models. The

platform solves the problems that the aircraft carrier deck

landing datasets is difficult to produce and advanced ex-

periments are difficult to carry out. At the same time, by

testing algorithms under various conditions, we show that

our software-in-the-loop platform can be used for algorithm

verification and advanced development. We share demo videos

and datasets datasets at https://github.com/U201613306/flight-

demonstration.git

In future work, we plan to further enhance the platform by

incorporating additional sensor simulations onto the existing

infrastructure. Additionally, we intend to design a multi-sensor

fusion experiment [28] in order to evaluate the functionality

of the simulation module. At present, the simulation of the sea

surface on the platform does not take into account the impact

of sea conditions. As a result, we aim to simulate typical sea

conditions by incorporating noise maps into the simulation.
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