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Abstract: The Global Navigation Satellite System 

(GNSS) signals are often blocked or interfered in 

complex geographical or electromagnetic 

environments, which may make GNSS receivers 

unable to provide satisfying navigation and 

positioning services. There have been many 

ground-based or space-based GNSS augmentation 

systems to improve the resilience of GNSS 

positioning, of which most of them rely on additional 

infrastructures. In this study, a smartphone-based 

tightly-coupled positioning method was developed 

using the images from a build-in monocular camera 

and GNSS signals. In this method, the feature points 

with the known coordinates are regarded as ‘visual 

pseudolite’ and the distance between the camera and 

the feature points was calculated according to the 

photogrammetry approaches and used to estimate the 

user positioning with GNSS signals. The 

experimental results showed the feasibility of the 

tightly-coupled positioning algorithm and reached the 

positioning accuracy of ±5.56 m (1σ), which is 

significantly higher than that of GNSS-only and 

vision-only positioning solutions. 

Keywords: visual positioning; GNSS; 

tightly-coupled positioning; high availability; 
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1. Introduction 

Global Navigation Satellite Systems (GNSS) 

have been widely used in positioning and navigation. 

GNSS signals work well in the open sky, but are 

often blocked or interfered in less GNSS-friendly 

environments, which degrade or even interrupt the 

positioning service [1]. On the other hand, GNSS 

interference, jamming and fraud occur frequently, 

which makes the GNSS-based positioning more 

difficult [2,3]. The future alternative positioning, 

navigation and timing (PNT) framework will 

expectedly achieve flexible and tough navigation and 

positioning services by integrating multiple 

heterogeneous navigation sources [4]. The method of 

multi-source fusion from the assured PNTs ensures 

the high availability of navigation and positioning 

services [5].  

Generally, there are three types of augmentation 

methods to improve satellite-based positioning 

availability: signal augmentation, matching, and dead 

reckoning. There are multiple GNSS signal 

augmentation approaches, such as the pseudolite 

[6,7], low earth orbit (LEO) navigation signal 

augmentation [8,9], cellular network, Wi-Fi signal 

[10], acoustic signal, and Radar, Loran-C, etc. This 

augmentation employs external infrastructures or 

actively transmitting signals to obtain more 

geometrical information for positioning. The 

matching algorithm relies on certain prior 

information, such as the magnetic field[11], the 

strength field of radio frequency (RF) signals, or 
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image features. Since the matching algorithm does 

not require geometry observation，it is often loosely 

coupled with the other positioning techniques, such 

as GNSS. The dead reckoning technique can be 

applied for navigation using the accumulated position 

change, such as the inertial sensors[12,13], visual 

odometer with cameras and/or LiDAR [14], 

simultaneous localization and mapping (SLAM)[15], 

etc. The dead reckoning methods can be either 

loosely coupled or tightly coupled with GNSS to 

obtain a smoother trajectory. However, most dead 

reckoning approaches are not capable of determining 

the initial states, which may lead to navigation failure 

when starting navigation in GNSS denied 

environments. 

The visual information is often used for local 

navigation, such as the SLAM technique and the 

visual odometers. These approaches determine the 

user movement by matching the features between two 

consecutive images. It can also be used for absolute 

positioning with cooperative targets, such as the QR 

code[16], the text[17], or other encoded targets [18]. 

The vision-based positioning is particularly suitable 

for positioning locally since the positioning accuracy 

will significantly decrease as the distance increases 

between the object and the camera. As a result, 

vision-based positioning techniques are mainly used 

to solve indoor positioning problems [19]. Because of 

the anti-jamming characteristics of the visual ranging 

signal, as well as the low price and portability of the 

cameras and GNSS receivers, the integration of 

GNSS and visual positioning systems has become a 

momentous issue for researchers [12-14]. 

In this research, a new GNSS/Vision 

tightly-coupled positioning method was proposed and 

developed toward improving the positioning 

availability and accuracy in the GNSS-denied 

environment. We viewed those feature points with 

their known coordinates as the ‘visual pseudolites’ 

and calculated the distance between the feature points 

and users via the photogrammetry methods. Then 

these visual ranges were combined with the GNSS 

signals to estimate the user positions. The visual 

pseudolite does not requires additional infrastructure 

deployment and immune from electromagnetic 

inference. In the future, a measurable 3D map can be 

used as the feature database to provide enough 

‘visual pseudolite’, which is particularly beneficial 

for these GNSS challenging environments, such as 

the city canyon.  

The remainder of this paper is organized as 

follows: the related work is reviewed in Section 2. 

Then, Section 3 presents the GNSS/Visual 

Localization (VL) tightly coupled model while the 

procedure of extracting the visual ranges is 

introduced in Section 4. Section 5 provides the results 

and discussion of the experiments. In the end, Section 

6 concludes the manuscript and outlines the potential 

future research.  

2. Related Work 

Since GNSS-based positioning has been 

extensively studied, we put out focus on vision-based 

localization. The literature review here includes the 

visual localization approaches and the existing 

GNSS/VL integration approaches. 

2.1 Visual Localization 

Visual localization is an essential research topic 

in the field of computer vision, and the specific 

technology can be roughly divided into three 

categories. The most common method depends on 

monocular vision, including positioning by 

processing single images or multiple images. Fischler 

et al. [20] proposed the PnP problem 

(perspective-n-point problem), which is a positioning 

method according to the projection relationship 

between n feature points and their corresponding 

spatial positions. Liu et al[21] established a 

geometric model to determine the camera position 

according to the correspondence between 2D and 3D 

lines or points. The second type of visual localization 

is the binocular vision-based approach, which 

demands a large amount of computation and is 

difficult to match image points. The SIFT features 

have been widely used in binocular stereo matching 

due to their robustness to scale, rotation, angle of 

view, and other changes [22,23]. The third type relies 

on panoramic vision with complex measurement 

depth. Yagi et al. [24] firstly applied the 
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omnidirectional vision system with a hyperbolic 

mirror to the navigation of mobile robots. Since then, 

the panoramic vision-based localization method has 

been widely studied. 

2.2 GNSS/vision combined Localization 

GNSS provides real-time and all-weather global 

positioning service and do not accumulate 

positioning errors with time. However, the GNSS 

signals are vulnerable to obstructions and 

interferences, so their performance needs to be 

improved in the GNSS challenging environment. 

There have been quite a few attempts to integrate 

GNSS with the vision-based localization approaches, 

which provide position increments most likely using 

inertial sensors and/or different odometers [25]. On 

the other hand, position and velocity information 

from GNSS can also be used for global optimization 

and geo-referencing in visual SLAM 

computation[26]. In terms of their integration 

architectures, the GNSS and vision information can 

be integrated with either loosely or tightly coupled 

approaches.  

Due to their complementary characteristics, the 

GNSS and vision integration can fully take their 

advantages. The monocular visual odometer suffers 

from a rank deficency with the trajectory scale, but it 

provides high relative positioning precision. GNSS 

positioning results in absolute positioning solutions, 

but its performance is vulnerable to the observation 

conditions. In the form of loosely coupled methods, 

one preprocesses two subsystems to deliver their 

results separately and then fuses them to obtain the 

integrated solution by the factor graph or filters. 

Dusha and Mejias [27] proposed a loosely coupled 

filtering method for monocular cameras and GPS, 

which is similar to the traditional GPS/INS loosely 

coupled filtering method. Chen et al. [28] confirmed 

that the monocular camera could significantly 

improve the GNSS positioning accuracy when in 

GNSS-denied environments. The fusion of visual 

information and GNSS data based on iterative 

optimization is also verified to be feasible[26]. The 

limitation of the loosely coupled localization system 

is that the visual information cannot be utilized to 

improve the availability of GNSS positioning. When 

GNSS signals become invalid, the loosely coupled 

system can only rely on the visual information, which 

may degrade the performance in terms of long-time 

GNSS loss-of-lock. 

With the tightly coupled GNSS/vision 

localization integration architecture, the carrier 

phases and pseudoranges from GNSS receivers are 

directly fused with the visual information [29]. The 

current tightly coupled system resorts to the camera 

information to identify the none-line-of-sight (NLOS) 

signals. Paul and Kyle [30] proposed an NLOS effect 

suppression algorithm based on LOS satellite 

selection for harsh environments. The images 

collected by the sky-pointing camera were divided 

into the open sky and obstructed regions. The 

satellites falling into the obstructed region would be 

rejected to participate in the final position calculation. 

On this basis, the satellite signal and visual 

information were tightly coupled through Kalman 

filter to provide the positional solution. Similarly, 

Suzuki employed the sky-pointing photo matching to 

eliminate wrong position candidate and thus improve 

the positioning accuracy[31]. These approaches can 

improve positioning accuracy in GNSS challenging 

environments, but cannot improve the GNSS signal 

availability in GNSS-denied environments. Another 

tightly coupled system is to tightly fuse GNSS 

signals with sensors such as the visual odometer. The 

changing information of relative positions provided 

by the visual odometer constrains the GNSS 

trajectory toward improving the positioning accuracy. 

Schreiber and Konigshof [32] proposed a method to 

combine the local visual odometer obtained by a 

vehicle stereo camera system with a low-cost GNSS 

receiver. In order to solve the positioning problem 

when the number of satellites was insufficient, the 

pseudorange measurements were directly fused with 

the sensor data. Because the GNSS/VO integration is 

similar to the GNSS/INS integration, it suffers from a 

similar issue, the performance declining due to a long 

period of GNSS outage [33]. In this study, a resilient 

smartphone based positioning approach is proposed 

by tightly integrating the monocular camera and 

GNSS signals to ensure the positioning availability 

issue in GNSS challenging and/or denied 
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environments. 

3. GNSS/VL Tightly-coupled Positioning Model 

In order to solve the positioning feasibility issue 

in the GNSS-denied environment, alternate 

navigation techniques should be involved to 

overcome the rank defect issue in positioning 

estimation. Currently, multiple transmitters are 

introduced such as the pseudolite stations, networks, 

or stations with Wi-Fi, 5G and acoustic signals, etc. 

All these signals are used to measure distances 

between transmitters and user’s devices and enhance 

the overall positioning performance. In this study, a 

ranging approach using the monocular camera is 

proposed. The features with their known coordinates 

are viewed as the ‘visual pseudolites’, which transmit 

light signals. The light signals are captured by the 

monocular camera. According to the similarity 

between the object and image spaces, the range 

between a camera focus and a visual pseudolite is 

calculated and used to collaborate with the GNSS 

signals tracked by the GNSS chip and further 

position the smartphone. The principle of the tightly 

coupled approach is illustrated in Error! Reference 

source not found.. The visual pseudolites are natural 

objects with certain easy-to-identify features, so no 

extra infrastructure is required. As the visible light is 

not affected by electromagnetic interference, it is 

more resilient than the GNSS-only positioning 

technique. In the future, a measurable 3D real map 

with enormous known coordinates information will 

be employed to assistant the identification of the 

visual pseudolites. Conceivably, the proposed method 

can also provide a resilient kinematic positioning 

solution in the GNSS denied environment.  

On the assumption that the range to a visual 

pseudolite has been successfully determined, then the 

tight fusion model of the two types of observations 

can be used in the positioning process. At first, we 

introduce the model for tightly coupling the GNSS 

and vision. The procedure of the visual range 

extraction is discussed in Section 4.  

The observation equations for the tightly-coupled 

positioning can be expressed as follows 

+
G P

C C

S
i tropR

match

orbP = + + c( t - t )+ I + +

P = +

   


 
 





(1) 

where GP  and CP  are the GNSS pseudorange and 

the distance measured by camera respectively;   

presents the geometric distance between a satellite or 

a visual pseudolite and a receiver; orb  is the error 

in GNSS satellite orbit; c is the speed of light in 

vacuum; St  and Rt  are the clock error of 

satellites and the receiver, respectively; iI  and trop  

are the ionospheric and tropospheric delays on the 

GNSS signals, respectively; match  is the position 

error of a visual pseudolite via the matching process, 

and P  and C  are the white noises of the GNSS 

observations and the visual ranges, respectively. 

Apparently, for the smartphone's built-in camera, the 

resolution and lens dissertation may lead to position 

errors during the feature matching process. 

How to handle the error sources is decisive on 

the final accuracy of the integrated positioning 

system. In GNSS pseudorange based positioning, the 

satellite orbit and clock correction can be obtained 

from the broadcast ephemeris. Currently, the error 

associated with the broadcast satellite orbit and 

satellite clock is about ±1-2 meters [34] and the 

remaining error is neglected in the processing 

procedure. The ionosphere and troposphere delays 

can be corrected with the empirical models. The 

Figure  1  Illustration of the tightly-coupled 

positioning approach using GNSS receiver and 

camera 
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former can be corrected with the Klobuchar model, 

BDGIM model or the NeQuick model[35], while the 

latter can be corrected with the Saastamoinen model 

or the Hopfield model. The receiver clock bias needs 

to be estimated along with the user’s unknown 

position [36].  

For the vision-derived ranges, the errors come 

from the visual pseudolite position and the ranges. 

Although we assume that the true position of a visual 

pseudolite is always known, the error is still brought 

by the matching process. However, the error in the 

matching process cannot be handled directly and can 

be adapted by adjusting the stochastic model. The 

distortion of the lens also affects the visual range 

accuracy, but it can be calibrated ahead. Since the 

visual range typically varies from a few meters to 

hundreds of meters, the atmospheric refraction can be 

ignored in this particular application. The visual 

range is independent of time, so it is free of 

time-dependent error sources. However, it is still 

possible to add time-tags for the visual ranges for 

kinematic positioning. As a result, the vision-based 

ranges suffer from fewer error sources and can be 

used to estimate the user coordinates directly.  

Another important issue for the integration is the 

unification of the spatial and temporal datums. The 

spatial datum for the visual range is defined by the 

coordinates of the visual pseudolite. Hence, only 

when the coordinate system of the visual pseudolite 

is compatible with the current geodetic datum of a 

GNSS, e.g. the World Geodetic System 84 (WGS84) 

for GPS, the Beidou coordinate systems (BDCS) or 

the International terrestrial reference frame (ITRF). 

Since the visual range does not have time information, 

it is not necessary to synchronize the visual 

information and the GNSS signals, but the visual 

range information should be updated once the user 

position changed. 

Estimating the user’s coordinates from the range 

information is not a linear problem, so the distance 

observation equation needs to be linearized first. The 

geometric distance can be expanded with the Taylor 

series as follows:  
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where  (0) is the approximate geometric distance 

from the receiver to satellites or visual pseudolite;  

is the nonlinear error; (
ix ,

iy , 
iz ) are the coordinates 

of satellites or visual pseudolite; ( x , y , z ) are 

the increment of the receiver coordinates. Neglecting 

the high order nonlinear term   yields  

(0) (0) (0)
(0)

(0) (0) (0)
( ) ( )

i i i
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E y
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      (3) 

The linearized observation model is given as 

follows: 
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  (6) 

where A  is the design matrix, in which the first m 

distance observations are the GNSS satellites, while 

the last n observations are obtained from the n visual 

pseudolites. X is the parameter vector to be estimated 

containing the receiver coordinates and clock bias. 

my  is the observations. The least-square solution of 

this equation system is formed as: 

1X̂ ( )T T
mA PA A Py                       (7) 

where P is the observation weighting matrix 

determined according to the prior ranging accuracy of 

camera and GNSS measurements.  

The stochastic model is crucial for the tightly 

coupled GNSS/vision fusion. For satellite data, the 

popular elevation-based weighting strategy can be 
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used. The weighting function between the observed 

variance and the elevation angle can be expressed 

as[37]: 

2 2 2 2/ (sin( ))a b                        (8) 

where 2   is the variance,   is the elevation angle 

of a satellite, and a and b are the constant error 

components, which can be determined empirically or 

derived from the variance component estimation.  

The stochastic model for the visual observations 

is characterized to be inversely proportional to the 

distance. A feature that is closer to the camera may 

have better resolution and is identified with the 

smaller matching error. So it should be more accurate. 

According to the experience, the distance errors 

corresponding to different distances are obtained, and 

the corresponding weight value is calculated by 

fitting the linear function. 

4. Range Extraction From the Images 

There is no doubt the key of the GNSS/Vision tightly 

coupled approach is how to extract the visual ranges. 

Extracting the precise visual ranges follows a 

stepwise procedure, which will be introduced in this 

section. 

4.1 Principle of Extracting the Visual Ranging 

The principle of the visual ranging is the space 

resection, which can be illustrated in Figure 2  

Figure 2. The ‘visual pseudolite’ are A, B and C in 

real-world with known 3D coordinates. The 

coordinates of the features in the photo plane a, b and 

c are the observables. S is the focus of the 

smartphone camera and the focal length can be 

precisely obtained from a calibration process. Ideally, 

the position and the attitude of the smartphone can be 

estimated with 3 or more matched features. However, 

due to the limitation of the smartphone camera 

quality, the initial position cannot achieve satisfactory 

accuracy, particularly for the large scene scenario. 

The visual range can be generated with the initial 

position and the known coordinates of the visual 

pseudolite. The user position can be re-estimated by 

integrating the visual range and the GNSS signals. 

Since the precision of the GNSS signals does not 

affect by the visual range length, the precision of the 

re-estimated user position can be improved. On the 

other hand, when the visible GNSS satellite is too 

few to fix the position, the integration of the visual 

range and the GNSS signals can provide reliable 

positioning results. 

 

Figure 2 Illustration of the feature-based space 

resection 

In practice, the visual range is affected by many 

error sources. In order to obtain high precise visual 

ranges, a procedure with four steps is designed and 

presented in Error! Reference source not found.. 

After acquired the images, the distortion caused by 

the lens should be calibrated first. The second step is 

obtaining the coordinates of the features by matching 

them with the feature database or 3D models. The 

absolute coordinates of the features in the database 

are known, so the matching procedure can connect 

the coordinates of the feature in the photo plane and 

the real world. The third step is estimating the initial 

position using the multiple matched features. The last 

step is deriving the visual ranges from the initial 

position so that they can work together with the 

GNSS signals to improve the positioning availability 

Figure 3 Flowchart of the visual ranging extraction 
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and reliability. 

4.2 Camera Lens Calibration 

The similarity relationship between the image 

plane and the real world is based on the light 

propagation along a straight line, however, this 

assumption is generally not true for the camera lens 

due to the lens design or the manufacturing precision. 

Two typical distortions caused by the camera lens are 

presented in Error! Reference source not found.. 

Camera lens distortion includes barrel distortion, 

pillow distortion, and linear distortion [38], which 

can be calibrated in advance. The calibration process 

is quite straightforward. It employs a series of photos 

with regular shapes. Then the lens distortion can be 

captured. Then, the distortion can be expressed as a 

set of distortion parameters, which can be estimated 

from the photo set. The distortion can be decomposed 

as radial distortion, tangential distortion, and thin 

prism distortion [39], The tangential distortion and 

the thin prism distortion are mainly caused by 

installation error and imperfection manufacturing[40]. 

In the calibration, the distortion parameters are 

expressed as a linear function of the radius and the 

origin coordinates in the photo [41]. These distortion 

parameters are estimated to describe the non-linear 

distortion over the two-dimensional photo plane.   

After the distortion parameter estimated, these 

parameter is used to calibrate the new coming photos. 

The coordinates of the pixel in the photo can be 

calibrated one by one and the distortion caused by the 

lens can be significantly mitigated. For the 

smartphone, camera calibration is particularly 

important since its lens is not as good as the 

professional camera.  

4.3 Feature Matching 

The second step to extract the visual range is 

feature matching. The target of feature matching is 

obtaining the absolute coordinates of the feature in 

the feature database. In order to automatically 

matching the features, a feature database with labeled 

data should be established. The feature matching 

procedure is similar to look up the dictionary. At first, 

extracting features from the newly captured photos, 

then automatically find the best matches in the 

database. Since the illumination condition and the 

view angle of the new photo and the database may 

not the same, so it is important to select the features 

and the matching algorithms. There are many feature 

matching approaches, such as the gray 

intensity-based approach, edge contour-based and 

corner detection-based approaches [42], while some 

of them only perform well for a particular type of 

image. In this paper, the Scale-invariant feature 

transform (SIFT) [43] feature detection and matching 

algorithm is adopted due to its outstanding 

computation stability in the case of illumination, 

rotation and scale change. Figure 5 gives an example of 

the matched features in two photos. The two photos 

have different view angles and the same features in 

the two photos are connected with solid lines. If there 

is no feature matched in the database, then the feature 

extracted from the new images will be discarded. If 

the feature is matched successfully, the known 

coordinates in the database will be given to the 

features in the new photo, so that the connections 

between the 2D photo plane and the 3D real world 

are established. In the future, the feature database can 

be replaced with a measurable 3D map, so that it can 

be used for large-scale feature matching to support 

autonomous driving applications. 

 
Figure 5 Example of matched features using SIFT 

features in two photos with different view angles. 

4.4 Visual Range Estimation 

Figure 4 Examples of typical distortion caused by 

the camera lens 



8 
 

With the coordinates of the features known, the 

extrinsic elements of the camera can be estimated. 

The visual range estimation is based on the principle 

of space resection in photogrammetry. In Figure 2, 

the coordinates of the visual pseudolite A and the 

camera focus S in the real-world coordinate system 

are denoted as (XA, YA, ZA) and (XS, YS, ZS). The 

coordinates of the corresponding feature a in the 

image plane coordinate system are denoted as (x, y, 

-f). Based on the collinear condition equation, the 

observation equation of the known point A can be 

expressed as [44]: 

1 1 1
0

3 3 3

2 2 2
0

3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

s s s

s s s

s s s

s s s

a X X b Y Y c Z Z
x x f

a X X b Y Y c Z Z

a X X b Y Y c Z Z
y y f

a X X b Y Y c Z Z

             
       
     

 (9) 

where ai, bi and ci (i=1,2,3) are nine direction cosines 

of attitude parameters ψ, ω and κ. 

The six exterior orientation elements (XS, YS, ZS , ψ, 

ω, κ) can be obtained through the coordinates of more 

than three non-collinear visual pseudolite. The 

collinear condition equation can be expanded by the 

Taylor series and the obtained linearized observation 

equation can be shown as: 

0

0

x x x x x x
x x d d d dXs dYs dZs

Xs Ys Zs
y y y y y y

y y d d d dXs dYs dZs
Xs Ys Zs
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  
  

     
                         

      

(10) 

In order to ensure the accuracy and reliability of 

parameter estimation, it is usually necessary to 

measure four or more image control points and 

corresponding image point coordinates, and use the 

least square adjustment method to solve the problem. 

At this time, the coordinates of image points (x, y) 

are taken as observation values, and the error 

equation of each image point can be listed as 

11 12 13 14 15 16

21 22 23 24 25 26

x s s s x

y s s s y

v a dX a dY a dZ a d a d a d l

v a dX a dY a dZ a d a d a d l

  
  

       
       

  (11) 

where these coefficients can be referred to [44]. 

Using the least-squares method to solve the 

exterior orientation elements can be given as 

1ˆ ( ) ( )T TA PA A Pl                      (12) 

where A  represents the design matrix and P  is the 

weight matrix of the observation value and l  

contains the observation information. 

Based on the exterior orientation elements, the 

approximate coordinates of the camera can be 

calculated, which is used to figure out the distance 

from the camera to the target points with the accurate 

coordinates of the target points together.  

In general, the longer the visual range between 

the camera and the visual pseudolite, the lower the 

accuracy of external orientation elements and 

position solution. So the variance of the distance 

observation value can be determined by establishing 

an empirical model according to the distance of 

observation. 

5. Experiments 

The performance of the proposed approach was 

verified with the experiments in the Wuhan 

University campus. The method is evaluated by 

images in outdoor scenarios and compared with other 

methods. Meanwhile, we will discuss the effect of 

different factors on the performance of the method. 

5.1 Experiment Setup 

 A test field was set up on the Youyi square on 

the campus. The distance from the observation point 

to the target building varies from 50 m to 100 m. The 

GNSS data and the pictures are collected with a 

RedMi k30 ultra smartphone. The smartphone was 

put on a tripod for the GNSS data collection and the 

skyplot of the tracked GNSS satellite is presented in 

Figure 6. Signals from 10 GPS satellites are tracked 

and only pseudorange on L1 frequency is used for 

positioning in this study. In the experiment, only two 

or three GNSS satellites are used to simulate the 

GNSS denied environments. Based on GNSS static 

data, the ground truth of the position is determined by 

Post-processing kinematic (PPK) technique which 

can achieve high-precision results. A feature database 

was established with a set of historical image data. 

The features were extracted from these images and 

their true coordinates in the WGS84 coordinate 

system were obtained by combining GNSS and the 

total station. The absolute coordinate of the total 

station site was computed by GNSS relative static 

positioning. The international GNSS service (IGS) 
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station WUH2 station is used as the reference station, 

which is only a few hundred meters far away from 

the experiment site. The precise coordinate of the 

WUH2 station is precisely known. Two GNSS points 

are measured in the test site. One is the total station 

site and the other one is used as the back sight. A 

Leick GS60 prism-free total station was used to 

precisely obtain the coordinates of the visual 

pseudolite. The visual pseudolites are randomly 

distributed on the wall or the ground. The features 

extracted from new photos would be matched by 

comparing with the established feature database and 

the corresponding visual ranging information would 

be calculated. 

 
 

Figure 6 Experiment setup (left) and the skyplot of 

the tracked GNSS satellites (right) 

5.2 GNSS/VL integrated Positioning performance 

In order to evaluate the effectiveness of the 

proposed method, the positioning solutions estimated 

from GNSS-only positioning, visual-only, and 

tightly-coupled methods were compared. In the 

GNSS-only positioning scheme, all tracked GNSS 

signals by the smartphone were used. In the 

visual-only positioning scheme, all the matched 

feature points are involved to solve the user position. 

In GNSS/vision tightly-coupled positioning scheme, 

only three visible satellite is selected to simulate the 

GNSS denied environment. In this study, GNSS 

signals from satellite G22, G09 and G31 are used.  

GNSS and image data were collected on 4 

different sites using the same smartphone in this 

experiment, the positioning results and the matched 

feature location are presented in Figure 7. The figure 

presents the position obtained with the visual 

localization-only, GNSS-only and tightly-coupled 

solution respectively. The true coordinates were 

computed with the static relative GNSS data 

processing. Most features in this experiment are 

located on the building wall. Each image may only 

contain a portion of the features. The figure indicates 

that all the three positioning schemes achieve meter 

level accuracy, but the tightly-coupled solution is 

closer to the reference solution than the other two 

solutions. 

 

Figure 7 Positioning results of different positioning 

schemes 

The root mean squares error (RMSE) of the 

three positioning schemes are listed in Table 1. The 

table indicates that smartphone-based GNSS 

positioning achieves several meter level accuracy and 

the up direction achieves the poorest positioning 

accuracy. With enough ‘visual pseudolites’, the 

visual-only positioning algorithm also achieves meter 

level accuracy as well and the visual-only positioning 

achieves the best accuracy in the up direction. In the 

tightly coupled solution, the positioning accuracy 

inherits the advantages of both techniques and thus 

achieving the best precision accuracy among all the 

three positioning schemes with its 3D RMSE 5.561m. 

The table also indicates that the integration of the 

visual range can achieve fairly good positioning 

results even in 3 visible GNSS satellite scenarios. 

Table 1 Comparison of the position accuracy (RMSE) 

using different positioning schemes 

Direction GNSS 

Only 

VL Only GNSS/VL 

North 2.463 m 4.269 m 2.758 m 

East 4.176 m 6.350 m 4.641 m 

Up 9.988 m 0.534 m 1.334 m 

3D 11.103 m 7.671 m 5.561 m 

An example of the positioning error time series 
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using the GPS-only and GPS/VL is presented in 

Figure 8. The figure explained how did the GPS/VL 

combined system improves the GPS-only positioning 

accuracy. Due to the poor quality of the smartphone's 

built-in GNSS antenna, the GPS-only positioning 

time series is quite noisy. By integrating with the 

visual range from images, the accuracy in the north 

direction and the up direction was dramatically 

improved, while the positioning accuracy in the east 

direction did not improve much, which may due to its 

poor observability in the visual ranging system.  

For the tightly-coupled positioning method, 

when the number of observable satellites is 

insufficient, the visual ranging information will be 

involved in the positioning process as pseudo 

satellites. The positioning accuracy is improved 

(27.5%) compared with that of visual-only 

positioning and is more significantly improved 

(49.9%) subject to the GNSS-only solution. In detail, 

the method of tightly-coupled GNSS/vision ensures 

that the positioning error in each direction is within a 

certain range, to provide stable and high-precision 

positioning results in GNSS-hostile environments. 

 
Figure 8 Positioning error time series comparison of the 

GNSS and GNSS/VL combined positioning. 

 

5.3 Impact of visible GNSS satellite number on the 

positioning accuracy 

In order to investigate the performance of the 

tightly-coupled approaches in the GNSS denied 

environment, we designed an experiment to 

investigate the positioning accuracy with different 

visible satellite numbers. Figure 9 shows the 

positioning error of the tightly coupled positioning 

method with different visible GNSS satellite numbers. 

We selected two visible GNSS satellites and three 

visible GNSS satellite scenarios respectively and 

integrating the GNSS signals with the visual ranges 

from different images and then evaluate their 

positioning accuracy. Since different images have 

different feature numbers, so the positioning accuracy 

is different. The RMSE of positioning results from 

different numbers of satellites are summarized in 

Table 2. The results show that 3 visible satellite 

scenario generally achieves better accuracy than the 2 

visible satellite scenarios. With 3 visible GNSS 

satellites, the precision improvement achieves about 

33.5%~57.3%, which indicates the GNSS satellite 

has a substantial contribution to the integrated 

positioning results, particularly when the GNSS 

visible satellite number is small. The number and the 

geometry of the visual pseudolite also have an impact 

on the final positioning accuracy. Integration of one 

GNSS signal with the visual ranges is meaningless 

since the GNSS signals have no contribution to the 

positioning results due to the presence of the receiver 

clock parameter. For more visible satellite number 

scenario, GNSS can provide positioning service alone, 

but integrating with the visual ranges still benefit for 

the precision improvement in the up direction.  

 

Figure 9 Positioning error of tightly-coupled method 

with different visible satellite number 

Table 2 Comparison of the positional RMSE of the 

tightly-coupled method based on different visible 

satellite number 

RMSE(m) 2 GNSS 

satellites 

3 GNSS 

satellites 

Improvement 

North 6.703 4.458 33.49% 
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East 5.580 2.382 57.31% 

Up 0.885 0.413 53.35% 

3D 8.766 5.072 42.15% 

 

5.4 Feature number impact of the positioning 

accuracy 

There is no doubt that the matched feature 

number is an important factor for the tightly 

combined positioning system. An experiment was 

designed to investigate this problem. We selected 3 

visible satellites in this experiment according to the 

discussion in section 5.3. We tested 3 visual GNSS 

satellites combined with 5, 7 and 9 visual pseudolite 

respectively and the results are presented in Figure 10. 

In this test, 11 images are used in the data processing. 

The figure shows that more visible pseudolite may 

improve the tightly coupled positioning accuracy, but 

it also depends on the geometry distribution of the 

visual pseudolite. For example, 7 visual pseudolite 

cases did not achieve precision improvement in the 

east direction comparing to the 5 visual pseudolite 

cases. 9 visual pseudolite case even achieves poorer 

accuracy in the up direction than 7 visual pseudolite 

cases. It concludes that more visual pseudolite may 

improve the positioning accuracy, but it also depends 

on the geometry distribution of the visual pseudolite. 

This conclusion may not hold for dense visual 

pseudolite cases since the positioning accuracy will 

convergence to the visual-only solution as the visual 

pseudolite number increases. 

 

Figure  10  Positioning accuracy of tightly-coupled 

method with different feature number 

6. Conclusion 

Positioning in a GNSS denied environment has 

been a challenge for a long time. This paper proposed 

a smartphone-based GNSS/monocular camera 

tightly-coupled positioning method to solve the 

GNSS low positioning availability problem in 

GNSS-hostile environments. With this method, the 

feature points are viewed as ‘visual pseudolites’ and 

the visual ranges are obtained via an image 

processing procedure. Then, these visual ranges are 

combined with the GNSS ranges to calculate the 

user's positions. The performance of the 

tightly-coupled approach was verified by a field test 

using a smartphone.  

The results showed that the tightly-coupled 

positioning method achieved about ±5.6-meter (1σ, 

3D) positioning accuracy in GNSS-hostile 

environments, and its positioning accuracy is 

significantly higher than that of GNSS-only and 

vision-only solutions. The tightly-coupled solution 

delivered a resilient solution in the GNSS denied 

environment. In comparison with the GNSS only 

solution, the tightly-coupled solution has 

dramatically improved the positioning accuracy in 

the vertical direction. The tightly coupled positioning 

accuracy varies with the number of the feature points 

and the visible GNSS satellites. 

This paper only builds a proof-of-concept 

system to verify the validness of the tightly coupled 

approach, many issues are not remained unconsidered 

in this study due to the time limit, e.g. the distribution 

form of feature points, the synchronization of the 

GNSS and the camera, the positioning performance 

in the mobile platform, etc. With an improved feature 

matching algorithm, it is possible to integrate the 

GNSS ranges with the real-time video to conduct 

kinematic positioning. A measurable 3D map can also 

be added to substantially improve the service 

coverage of the tightly coupled solution and these 

topics will be in our next step.  

Acknowledgment:  

The authors acknowledge the National Natural 

Science Foundation of China for its financial support 

(No. 42074036). This work is also partially funded by 

the Fundamental Research Funds for the Central 

Universities. 



12 
 

References 

[1]. Jafarnia-Jahromi, A.; Broumandan, A.; Nielsen, 

J.; Lachapelle, G. GPS Vulnerability to Spoofing 

Threats and a Review of Antispoofing 

Techniques. International Journal of Navigation 

and Observation 2012, 2012, 1-16. 

[2]. Cao, K.; Wang, L.; Li, B.; Ma, H. A Real-time 

Phase Center Variation Compensation Algorithm 

for The Anti-jamming GNSS Antennas. IEEE 

Access 2020, 2020, 128705-128715. 

[3]. Zhao, X.; Zhan, X.; Yan, K. GNSS 

vulnerabilities: simulation, verification, and 

mitigation platform design. Geo-spatial 

Information Science 2013, 16, 149-154. 

[4]. Han, S.; Gong, Z.; Meng, X.; Li, C.; Gu, X. 

Future alternative positioning, navigation, and 

timing techniques: A survey. IEEE Wireless 

Communications 2016, 23, 154-160. 

[5]. Parkinson, B.W. Assured PNT for Our Future: 

PTA Actions Necessary to Reduce Vulnerability 

and Ensure Availability. GPS World 2014, 14, 

1-10. 

[6]. Montillet, J.-P.; Roberts, G.W.; Hancock, C.; 

Meng, X.; Ogundipe, O.; Barnes, J. Deploying a 

Locata network to enable precise positioning in 

urban canyons. Journal of Geodesy 2009, 83, 

91-103. 

[7]. Montillet, J.-P.; Bonenberg, L.K.; Hancock, 

C.M.; Roberts, G.W. On the improvements of 

the single point positioning accuracy with 

Locata technology. GPS Solutions 2013, 18, 

273-282. 

[8]. Wang, L.; Chen, R.; Li, D.; Zhang, G.; Shen, X.; 

Yu, B.; Wu, C.; Xie, S.; Zhang, P.; Li, M., et al. 

Initial Assessment of the LEO Based Navigation 

signal augmentation System from Luojia-1A 

Satellite. Sensors 2018, 18, 3919. 

[9]. Wang, L.; Chen, R.; Xu, B.; Zhang, X.; Li, T.; 

Wu, C. The Challenges of LEO Based 

Navigation Augmentation System – Lessons 

Learned from Luojia-1A Satellite, In China 

Satellite Navigation Conference (CSNC) 2019 

Proceedings, Beijing, China, 2019//, 2019; Sun, 

J.; Yang, C.; Yang, Y., Eds. Springer Singapore: 

Beijing, China, pp 298-310. 

[10]. Nur, K.; Feng, S.; Ling, C.; Ochieng, W. 

Integration of GPS with a WiFi high accuracy 

ranging functionality. Geo-spatial Information 

Science 2013, 16, 155-168. 

[11]. Li, Y.; Zhuang, Y.; Lan, H.; Zhou, Q.; Niu, X.; 

El-Sheimy, N. A Hybrid WiFi/Magnetic 

Matching/PDR Approach for Indoor Navigation 

With Smartphone Sensors. IEEE 

Communications Letters 2016, 20, 169-172. 

[12].Li, T.; Zhang, H.; Gao, Z.; Niu, X.; El-sheimy, N. 

Tight Fusion of a Monocular Camera, 

MEMS-IMU, and Single-Frequency 

Multi-GNSS RTK for Precise Navigation in 

GNSS-Challenged Environments. Remote 

Sensing 2019, 11, 610. 

[13]. Hasnur-rabiain, A.; Kealy, A.; Morelande, M. 

INS stochastic error detection during kinematic 

tests and impacts on INS/GNSS performance. 

Geo-spatial Information Science 2013, 16, 

169-176. 

[14]. Ruotsalainen, L.; Kuusniemi, H.; Bhuiyan, 

M.Z.H.; Chen, L.; Chen, R. A two-dimensional 

pedestrian navigation solution aided with a 

visual gyroscope and a visual odometer. GPS 

Solutions 2012, 17, 575-586. 

[15]. Durrant-Whyte, H.; Bailey, T. Simultaneous 

Localization and Mapping (SLAM): Part I. 

IEEE Robotics & Automation Magazine 2006, 

13, 99-110. 

[16]. Sneha, A.; Teja, V.; Mishra, T.; Satya Chitra, K. 

QR Code based Indoor Navigation system for 

Attender Robot. EAI Endorsed Transactions on 

Internet of Things 2020, 6, 165519. 

[17]. Li, B.; Zou, D.; Sartori, D.; Pei, L.; Yu, W. 

TextSLAM: Visual SLAM with Planar Text 

Features, In IEEE International Conference on 

Robotics and Automation (ICRA), Paris, France, 

2020; Paris, France. 

[18]. Liao, X.; Chen, R.; Li, M.; Guo, B.; Niu, X.; 

Zhang, W. Design of a Smartphone Indoor 

Positioning Dynamic Ground Truth Reference 

System Using Robust Visual Encoded Targets. 

Sensors (Basel) 2019, 19, 1261. 

[19]. Werner, M.; Kessel, M.; Marouane, C. Indoor 

positioning using smartphone camera, In 



13 
 

International Conference on Indoor Positioning 

and Indoor Navigation (IPIN), Guimaraes, 

Portugal, 2011; IEEE: Guimaraes, Portugal. 

[20]. Fischler, M.A.; Bolles, R.C. Random Sample 

Consensus: A Paradigm for Model Fitting with 

Applications To Image Analysis and Automated 

Cartography. Communications of the ACM 1981, 

24, 381-395. 

[21]. Liu, Y.; Huang, T.S.; Faugeras, O.D. 

Determination of Camera Location from 2-D to 

3-D Line and Point Correspondences. IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence 1990, 12, 28-37. 

[22]. Lowe, D.G. Object recognition from local 

scale-invariant features, In Proceedings of the 

Seventh IEEE International Conference on 

Computer Vision, Kerkyra, Greece, 1999; IEEE: 

Kerkyra, Greece, pp 1150-1157. 

[23]. Lowe, D.G. Distinctive Image Features from 

Scale-Invariant Keypoints. International Journal 

of Computer Vision 2004, 60, 91-110. 

[24]. Yagi, Y.; Yachida, M. Real-time generation of 

environmental map and obstacle avoidance 

using omnidirectional image sensor with conic 

mirror, In Proceedings. 1991 IEEE Computer 

Society Conference on Computer Vision and 

Pattern Recognition, Maui, HI, USA, 1991; 

IEEE: Maui, HI, USA, pp 160-165. 

[25]. Yang, Y.; Shen, Q.; Li, J.; Deng, Z.; Wang, H.; 

Gao, X. Position and Attitude Estimation 

Method Integrating Visual Odometer and GPS. 

Sensors (Basel) 2020, 20, 2121. 

[26]. Shi, Y.; Ji, S.; Shi, Z.; Duan, Y.; Shibasaki, R. 

GPS-supported visual SLAM with a rigorous 

sensor model for a panoramic camera in outdoor 

environments. Sensors (Basel) 2012, 13, 

119-136. 

[27]. Dusha, D.; Mejias, L. Error analysis and attitude 

observability of a monocular GPS/visual 

odometry integrated navigation filter. The 

International Journal of Robotics Research 2012, 

31, 714-737. 

[28]. Chen, X.; Hu, W.; Zhang, L.; Shi, Z.; Li, M. 

Integration of Low-Cost GNSS and Monocular 

Cameras for Simultaneous Localization and 

Mapping. Sensors 2018, 18, 2193. 

[29]. Chen, R.; Wang, L.; Li, D.; Chen, L.; Fu, W. A 

Survey on the Fusion of the Navigation and the 

Remote Sensing Techniques. Acta Geodaetica Et 

Cartographic Sinica 2019, 48, 1507-1522. 

[30]. Gakne, P.V.; O'Keefe, K. Tightly-Coupled 

GNSS/Vision Using a Sky-Pointing Camera for 

Vehicle Navigation in Urban Areas. Sensors 

(Basel) 2018, 18, 1244. 

[31]. Suzuki, T. GNSS Photo Matching: Positioning 

using GNSS and Camera in Urban Canyon, In 

ION GNSS+ 2015, Tampa, Florida, 2015; 

Tampa, Florida. 

[32]. Schreiber, M.; Konigshof, H.; Hellmund, A.-M.; 

Stiller, C. Vehicle Localization with Tightly 

Coupled GNSS and Visual Odometry, In 2016 

IEEE Intelligent Vehicles Symposium (IV), 

Gothenburg, Sweden, 2016; IEEE: Gothenburg, 

Sweden. 

[33]. Soloviev, A.; Venable, D. Integration of GPS 

and Vision Measurements for Navigation in 

GPS Challenged Environments, In IEEE/ION 

Position, Location and Navigation Symposium, 

Indian Wells, CA, 2010; IEEE/ION: Indian 

Wells, CA. 

[34]. Montenbruck, O.; Steigenberger, P.; Hauschild, 

A. Broadcast versus precise ephemerides: a 

multi-GNSS perspective. GPS Solutions 2015, 

19, 321-333. 

[35]. Yuan, Y.; Wang, N.; Li, Z.; Huo, X. The BeiDou 

global broadcast ionospheric delay correction 

model (BDGIM) and its preliminary 

performance evaluation results. Navigation 2019, 

1-15. 

[36]. Wang, L.; Feng, Y.; Guo, J. Reliability control of 

single-epoch RTK ambiguity resolution. GPS 

Solutions 2017, 21, 591-604. 

[37]. Wang, L.; Feng, Y.; Wang, C. Real-Time 

Assessment of GNSS Observation Noise with 

Single Receivers. Journal of Global Positioning 

Systems 2013, 12, 73-82. 

[38]. Li, W.; Huang, W.; Breier, M.; Merhof, D. Have 

we Underestimated the Power of Image 

Undistortion?, In IEEE International Conference 

on Image Processing (ICIP) Phoenix, AZ,, 2010; 



14 
 

Phoenix, AZ,, pp 2946-2950. 

[39]. Zhang, Z. Camera Calibration with 

One-Dimensional Objects. IEEE Transactions 

on Pattern Analysis and Machine Intelligence 

2004, 26, 892-899. 

[40]. Wu, D.; Chen, R.; Chen, L. Visual Positioning 

Indoors: Human Eyes vs. Smartphone Cameras. 

Sensors 2017, 17, 2645. 

[41]. Zhang, Z. A Flexible New Technique for 

Camera Calibration. IEEE Transactions on 

Pattern Analysis and Machine Intelligence 2000, 

22, 1330-1334. 

[42]. Yusefi, A.; Durdu, A.; Sungur, C. Görsel 

Odometride SIFT, SURF, FAST, STAR ve ORB 

özellik algılama algoritmalarının Performans ve 

Takas Değerlendirmesi. European Journal of 

Science and Technology 2020, 2020, 455-460. 

[43]. Zhou, H.; Yuan, Y.; Shi, C. Object Tracking 

using SIFT Features and Mean Shift. Computer 

Vision and Image Understanding 2009, 113, 

345-352. 

[44]. Lillesand, T.M.; Kiefer, R.W. Remote sensing 

and image interpretation. John Wiley & Sons: 

New York, 1979. 

Authors 

Han Xu received the BSc. degree in 

National geoinformation monitoring 

from Wuhan University in 2018. She 

is currently pursuing the master 

degree at the State Key Laboratory of 

Information Engineering in 

Surveying, Mapping and Remote Sensing, Wuhan 

University. Her research interest includes surveying 

data processing and multi-system fusion positioning. 

Lei Wang received Ph.D. degree in 

Electronical Engineer and Computer 

Science (EECS) from Queensland 

University of Technology, Australia in 

2015. He is currently an associate 

research fellow in the State Key 

Laboratory of Information Engineering in Surveying, 

Mapping and Remote Sensing, Wuhan University, 

China. His research interest includes GNSS precise 

positioning, LEO orbit determination and LEO 

navigation augmentation and indoor positioning. 

Ruizhi Chen is currently a Professor 

and the Director of the State Key 

Laboratory of Information Engineering 

in surveying, mapping, and remote 

sensing with Wuhan University. He 

was an Endowed Chair Professor with 

Texas A&M University Corpus Christi, USA, the Head 

and a Professor of the Department of Navigation and 

Positioning, Finnish Geodetic Institute, and the 

Engineering Manager of Nokia, Finland. He has 

published two books and more than 200 scientific 

papers. His current research interests include indoor 

positioning, satellite navigation, and location-based 

services. 

Haitao Zhou received the M.S. degree 

in Geodesy and Surveying 

Engineering from Information 

Engineering University, Zhengzhou, 

China in 2016. He is pursuing the 

Ph.D. degree in Geodesy and 

Surveying Engineering from Wuhan University, 

Hubei, China. His research interests include 

surveying data processing and GNSS precise 

positioning. 

Tao Li was born in Jiangxi, China 

in 1995. He received the B.Sc. 

degree in surveying and mapping 

engineering from China University 

of Mining and Technology in 2018. 

Now he is a Ph.D. student at 

Wuhan University. His research interests include 

troposphere delay modeling, ionosphere, and the 

LEO navigation augmentation technology. 

 Yi Han received M.sc degree in 

Geodesy and surveying engineering 

from Wuhan University in 2019, He 

is currently a Ph.D candidate at the 

State Key Laboratory of 

Information Engineering in 

Surveying, Mapping and Remote Sensing (LIESMARS), 

Wuhan University. His current research interest 

includes the aplications of LEO constellation 

optimization and ionosphere. 


