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Abstract: The Global Navigation Satellite System

(GNSS) signals are often blocked or interfered in
complex geographical or electromagnetic
environments, which may make GNSS receivers
unable to provide satisfying navigation and
positioning services. There have been many
ground-based or space-based GNSS augmentation
systems to improve the resilience of GNSS
positioning, of which most of them rely on additional
infrastructures. In this study, a smartphone-based
tightly-coupled positioning method was developed
using the images from a build-in monocular camera
and GNSS signals. In this method, the feature points
with the known coordinates are regarded as ‘visual
pseudolite’ and the distance between the camera and
the feature points was calculated according to the
photogrammetry approaches and used to estimate the
user positioning with GNSS  signals. The
experimental results showed the feasibility of the
tightly-coupled positioning algorithm and reached the
positioning accuracy of £5.56 m (lo), which is
significantly higher than that of GNSS-only and

vision-only positioning solutions.
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1. Introduction

Global Navigation Satellite Systems (GNSS)
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have been widely used in positioning and navigation.
GNSS signals work well in the open sky, but are
often blocked or interfered in less GNSS-friendly
environments, which degrade or even interrupt the
positioning service [1]. On the other hand, GNSS
interference, jamming and fraud occur frequently,
which makes the GNSS-based positioning more
difficult [2,3]. The future alternative positioning,
navigation and timing (PNT) framework will
expectedly achieve flexible and tough navigation and
positioning  services by integrating multiple
heterogeneous navigation sources [4]. The method of
multi-source fusion from the assured PNTs ensures
the high availability of navigation and positioning
services [5].

Generally, there are three types of augmentation
methods to improve satellite-based positioning
availability: signal augmentation, matching, and dead
reckoning. There are multiple GNSS signal
augmentation approaches, such as the pseudolite
[6,7], low earth orbit (LEO) navigation signal
augmentation [8,9], cellular network, Wi-Fi signal
[10], acoustic signal, and Radar, Loran-C, etc. This
augmentation employs external infrastructures or
actively transmitting signals to obtain more
geometrical information for positioning. The
matching algorithm relies on certain prior
information, such as the magnetic field[11], the

strength field of radio frequency (RF) signals, or



image features. Since the matching algorithm does
not require geometry observation, it is often loosely
coupled with the other positioning techniques, such
as GNSS. The dead reckoning technique can be
applied for navigation using the accumulated position
change, such as the inertial sensors[12,13], visual
odometer with cameras and/or LiDAR [14],
simultaneous localization and mapping (SLAM)[15],
etc. The dead reckoning methods can be either
loosely coupled or tightly coupled with GNSS to
obtain a smoother trajectory. However, most dead
reckoning approaches are not capable of determining
the initial states, which may lead to navigation failure
when starting navigation in GNSS denied
environments.

The visual information is often used for local
navigation, such as the SLAM technique and the
visual odometers. These approaches determine the
user movement by matching the features between two
consecutive images. It can also be used for absolute
positioning with cooperative targets, such as the QR
code[16], the text[17], or other encoded targets [18].
The vision-based positioning is particularly suitable
for positioning locally since the positioning accuracy
will significantly decrease as the distance increases
between the object and the camera. As a result,
vision-based positioning techniques are mainly used
to solve indoor positioning problems [19]. Because of
the anti-jamming characteristics of the visual ranging
signal, as well as the low price and portability of the
cameras and GNSS receivers, the integration of
GNSS and visual positioning systems has become a
momentous issue for researchers [12-14].

In this research, a new GNSS/Vision
tightly-coupled positioning method was proposed and
developed toward improving the positioning
availability and accuracy in the GNSS-denied
environment. We viewed those feature points with
their known coordinates as the ‘visual pseudolites’
and calculated the distance between the feature points
and users via the photogrammetry methods. Then
these visual ranges were combined with the GNSS
signals to estimate the user positions. The visual
pseudolite does not requires additional infrastructure

deployment and immune from electromagnetic

inference. In the future, a measurable 3D map can be
used as the feature database to provide enough
‘visual pseudolite’, which is particularly beneficial
for these GNSS challenging environments, such as
the city canyon.

The remainder of this paper is organized as
follows: the related work is reviewed in Section 2.
Then, Section 3 presents the GNSS/Visual
Localization (VL) tightly coupled model while the
procedure of extracting the visual ranges is
introduced in Section 4. Section 5 provides the results
and discussion of the experiments. In the end, Section
6 concludes the manuscript and outlines the potential

future research.

2. Related Work

Since GNSS-based positioning has been
extensively studied, we put out focus on vision-based
localization. The literature review here includes the
visual localization approaches and the existing

GNSS/VL integration approaches.
2.1 Visual Localization

Visual localization is an essential research topic
in the field of computer vision, and the specific
technology can be roughly divided into three
categories. The most common method depends on
monocular  vision, including positioning by
processing single images or multiple images. Fischler
et al. [20]

(perspective-n-point problem), which is a positioning

proposed the PnP  problem
method according to the projection relationship
between n feature points and their corresponding
spatial positions. Liu et al[21] established a
geometric model to determine the camera position
according to the correspondence between 2D and 3D
lines or points. The second type of visual localization
is the binocular vision-based approach, which
demands a large amount of computation and is
difficult to match image points. The SIFT features
have been widely used in binocular stereo matching
due to their robustness to scale, rotation, angle of
view, and other changes [22,23]. The third type relies
on panoramic vision with complex measurement
depth. Yagi et al. [24] firstly applied the



omnidirectional vision system with a hyperbolic
mirror to the navigation of mobile robots. Since then,
the panoramic vision-based localization method has

been widely studied.
2.2 GNSS/vision combined Localization

GNSS provides real-time and all-weather global
positioning service and do not accumulate
positioning errors with time. However, the GNSS
signals are vulnerable to obstructions and
interferences, so their performance needs to be
improved in the GNSS challenging environment.
There have been quite a few attempts to integrate
GNSS with the vision-based localization approaches,
which provide position increments most likely using
inertial sensors and/or different odometers [25]. On
the other hand, position and velocity information
from GNSS can also be used for global optimization
and geo-referencing in visual SLAM
computation[26]. In terms of their integration
architectures, the GNSS and vision information can
be integrated with either loosely or tightly coupled
approaches.

Due to their complementary characteristics, the
GNSS and vision integration can fully take their
advantages. The monocular visual odometer suffers
from a rank deficency with the trajectory scale, but it
provides high relative positioning precision. GNSS
positioning results in absolute positioning solutions,
but its performance is vulnerable to the observation
conditions. In the form of loosely coupled methods,
one preprocesses two subsystems to deliver their
results separately and then fuses them to obtain the
integrated solution by the factor graph or filters.
Dusha and Mejias [27] proposed a loosely coupled
filtering method for monocular cameras and GPS,
which is similar to the traditional GPS/INS loosely
coupled filtering method. Chen et al. [28] confirmed
that the monocular camera could significantly
improve the GNSS positioning accuracy when in
GNSS-denied environments. The fusion of visual
information and GNSS data based on iterative
optimization is also verified to be feasible[26]. The
limitation of the loosely coupled localization system
is that the visual information cannot be utilized to

improve the availability of GNSS positioning. When

GNSS signals become invalid, the loosely coupled
system can only rely on the visual information, which
may degrade the performance in terms of long-time
GNSS loss-of-lock.

With  the tightly coupled GNSS/vision
localization integration architecture, the carrier
phases and pseudoranges from GNSS receivers are
directly fused with the visual information [29]. The
current tightly coupled system resorts to the camera
information to identify the none-line-of-sight (NLOS)
signals. Paul and Kyle [30] proposed an NLOS effect
suppression algorithm based on LOS satellite
selection for harsh environments. The images
collected by the sky-pointing camera were divided
into the open sky and obstructed regions. The
satellites falling into the obstructed region would be
rejected to participate in the final position calculation.
On this basis, the satellite signal and visual
information were tightly coupled through Kalman
filter to provide the positional solution. Similarly,
Suzuki employed the sky-pointing photo matching to
eliminate wrong position candidate and thus improve
the positioning accuracy[31]. These approaches can
improve positioning accuracy in GNSS challenging
environments, but cannot improve the GNSS signal
availability in GNSS-denied environments. Another
tightly coupled system is to tightly fuse GNSS
signals with sensors such as the visual odometer. The
changing information of relative positions provided
by the visual odometer constrains the GNSS
trajectory toward improving the positioning accuracy.
Schreiber and Konigshof [32] proposed a method to
combine the local visual odometer obtained by a
vehicle stereo camera system with a low-cost GNSS
receiver. In order to solve the positioning problem
when the number of satellites was insufficient, the
pseudorange measurements were directly fused with
the sensor data. Because the GNSS/VO integration is
similar to the GNSS/INS integration, it suffers from a
similar issue, the performance declining due to a long
period of GNSS outage [33]. In this study, a resilient
smartphone based positioning approach is proposed
by tightly integrating the monocular camera and
GNSS signals to ensure the positioning availability

issue in  GNSS challenging and/or denied



environments.

3. GNSS/VL Tightly-coupled Positioning Model

In order to solve the positioning feasibility issue
GNSS-denied
navigation techniques should be involved to

in the environment,  alternate
overcome the rank defect issue in positioning
estimation. Currently, multiple transmitters are
introduced such as the pseudolite stations, networks,
or stations with Wi-Fi, 5G and acoustic signals, etc.
All these signals are used to measure distances
between transmitters and user’s devices and enhance
the overall positioning performance. In this study, a
ranging approach using the monocular camera is
proposed. The features with their known coordinates
are viewed as the ‘visual pseudolites’, which transmit
light signals. The light signals are captured by the
monocular camera. According to the similarity
between the object and image spaces, the range
between a camera focus and a visual pseudolite is
calculated and used to collaborate with the GNSS
signals tracked by the GNSS chip and further
position the smartphone. The principle of the tightly
coupled approach is illustrated in Error! Reference
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Figure 1 [Illustration of the tightly-coupled

positioning approach using GNSS receiver and

camera

source not found.. The visual pseudolites are natural
objects with certain easy-to-identify features, so no
extra infrastructure is required. As the visible light is
not affected by electromagnetic interference, it is
more resilient than the GNSS-only positioning
technique. In the future, a measurable 3D real map
with enormous known coordinates information will
be employed to assistant the identification of the

visual pseudolites. Conceivably, the proposed method

can also provide a resilient kinematic positioning
solution in the GNSS denied environment.

On the assumption that the range to a visual
pseudolite has been successfully determined, then the
tight fusion model of the two types of observations
can be used in the positioning process. At first, we
introduce the model for tightly coupling the GNSS
and vision. The procedure of the visual range
extraction is discussed in Section 4.

The observation equations for the tightly-coupled

positioning can be expressed as follows

P, =p+38,, +c(6t° -8ty )+ Ii+Suop+e, 1
PC = p+§match +8C ( )

where F, and F. are the GNSS pseudorange and

the distance measured by camera respectively; O

presents the geometric distance between a satellite or
a visual pseudolite and a receiver; O, is the error
in GNSS satellite orbit; ¢ is the speed of light in

vacuum,; ot° and 5tR are the clock error of

satellites and the receiver, respectively; /; and J,, »

are the ionospheric and tropospheric delays on the

GNSS signals, respectively; O

e 1S the position

error of a visual pseudolite via the matching process,
and &, and &, are the white noises of the GNSS

observations and the visual ranges, respectively.
Apparently, for the smartphone's built-in camera, the
resolution and lens dissertation may lead to position
errors during the feature matching process.

How to handle the error sources is decisive on
the final accuracy of the integrated positioning
system. In GNSS pseudorange based positioning, the
satellite orbit and clock correction can be obtained
from the broadcast ephemeris. Currently, the error
associated with the broadcast satellite orbit and
satellite clock is about +1-2 meters [34] and the
remaining error is neglected in the processing
procedure. The ionosphere and troposphere delays

can be corrected with the empirical models. The



former can be corrected with the Klobuchar model,
BDGIM model or the NeQuick model[35], while the
latter can be corrected with the Saastamoinen model
or the Hopfield model. The receiver clock bias needs
to be estimated along with the user’s unknown
position [36].

For the vision-derived ranges, the errors come
from the visual pseudolite position and the ranges.
Although we assume that the true position of a visual
pseudolite is always known, the error is still brought
by the matching process. However, the error in the
matching process cannot be handled directly and can
be adapted by adjusting the stochastic model. The
distortion of the lens also affects the visual range
accuracy, but it can be calibrated ahead. Since the
visual range typically varies from a few meters to
hundreds of meters, the atmospheric refraction can be
ignored in this particular application. The visual
range is independent of time, so it is free of
time-dependent error sources. However, it is still
possible to add time-tags for the visual ranges for
kinematic positioning. As a result, the vision-based
ranges suffer from fewer error sources and can be
used to estimate the user coordinates directly.

Another important issue for the integration is the
unification of the spatial and temporal datums. The
spatial datum for the visual range is defined by the
coordinates of the visual pseudolite. Hence, only
when the coordinate system of the visual pseudolite
is compatible with the current geodetic datum of a
GNSS, e.g. the World Geodetic System 84 (WGS84)
for GPS, the Beidou coordinate systems (BDCS) or
the International terrestrial reference frame (ITRF).
Since the visual range does not have time information,
it is not necessary to synchronize the visual
information and the GNSS signals, but the visual
range information should be updated once the user
position changed.

Estimating the user’s coordinates from the range
information is not a linear problem, so the distance
observation equation needs to be linearized first. The
geometric distance can be expanded with the Taylor

series as follows:
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where p@is the approximate geometric distance

from the receiver to satellites or visual pseudolite; €

is the nonlinear error; (x;,y,, z,) are the coordinates

of satellites or visual pseudolite; (ox, oy, oOz) are

the increment of the receiver coordinates. Neglecting
the high order nonlinear term & yields
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The linearized observation model is given as

follows:
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where A is the design matrix, in which the first m
distance observations are the GNSS satellites, while
the last n observations are obtained from the n visual
pseudolites. §Xis the parameter vector to be estimated
containing the receiver coordinates and clock bias.

y,, is the observations. The least-square solution of

this equation system is formed as:
5X =(A"PA)" A" Pyn @)

where P is the observation weighting matrix
determined according to the prior ranging accuracy of
camera and GNSS measurements.

The stochastic model is crucial for the tightly
coupled GNSS/vision fusion. For satellite data, the
popular elevation-based weighting strategy can be



used. The weighting function between the observed
variance and the elevation angle can be expressed
as[37]:

o’ =d® +b* / (sin(a))? (8)

where o2

is the variance, & is the elevation angle
of a satellite, and a and b are the constant error
components, which can be determined empirically or
derived from the variance component estimation.

The stochastic model for the visual observations
is characterized to be inversely proportional to the
distance. A feature that is closer to the camera may

have better resolution and is identified with the

smaller matching error. So it should be more accurate.

According to the experience, the distance errors
corresponding to different distances are obtained, and
the corresponding weight value is calculated by

fitting the linear function.

4. Range Extraction From the Images

There is no doubt the key of the GNSS/Vision tightly
coupled approach is how to extract the visual ranges.
Extracting the precise visual ranges follows a
stepwise procedure, which will be introduced in this

section.
4.1 Principle of Extracting the Visual Ranging

The principle of the visual ranging is the space
resection, which can be illustrated in Figure 2
Figure 2. The ‘visual pseudolite’ are A, B and C in
real-world with known 3D coordinates. The
coordinates of the features in the photo plane a, b and
c are the observables. S is the focus of the
smartphone camera and the focal length can be
precisely obtained from a calibration process. Ideally,
the position and the attitude of the smartphone can be
estimated with 3 or more matched features. However,
due to the limitation of the smartphone camera
quality, the initial position cannot achieve satisfactory
accuracy, particularly for the large scene scenario.
The visual range can be generated with the initial
position and the known coordinates of the visual
pseudolite. The user position can be re-estimated by
integrating the visual range and the GNSS signals.
Since the precision of the GNSS signals does not

affect by the visual range length, the precision of the
re-estimated user position can be improved. On the
other hand, when the visible GNSS satellite is too
few to fix the position, the integration of the visual
range and the GNSS signals can provide reliable

positioning results.
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Figure 2 Illustration of the feature-based space

resection

In practice, the visual range is affected by many
error sources. In order to obtain high precise visual
ranges, a procedure with four steps is designed and
presented in Error! Reference source not found..
After acquired the images, the distortion caused by
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Figure 3 Flowchart of the visual ranging extraction

the lens should be calibrated first. The second step is
obtaining the coordinates of the features by matching
them with the feature database or 3D models. The
absolute coordinates of the features in the database
are known, so the matching procedure can connect
the coordinates of the feature in the photo plane and
the real world. The third step is estimating the initial
position using the multiple matched features. The last
step is deriving the visual ranges from the initial
position so that they can work together with the
GNSS signals to improve the positioning availability



and reliability.
4.2 Camera Lens Calibration

The similarity relationship between the image
plane and the real world is based on the light
propagation along a straight line, however, this
assumption is generally not true for the camera lens
due to the lens design or the manufacturing precision.
Two typical distortions caused by the camera lens are
presented in Error! Reference source not found..

Figure 4 Examples of typical distortion caused by

the camera lens

Camera lens distortion includes barrel distortion,
pillow distortion, and linear distortion [38], which
can be calibrated in advance. The calibration process
is quite straightforward. It employs a series of photos
with regular shapes. Then the lens distortion can be
captured. Then, the distortion can be expressed as a
set of distortion parameters, which can be estimated
from the photo set. The distortion can be decomposed
as radial distortion, tangential distortion, and thin
prism distortion [39], The tangential distortion and
the thin prism distortion are mainly caused by

installation error and imperfection manufacturing[40].

In the calibration, the distortion parameters are
expressed as a linear function of the radius and the
origin coordinates in the photo [41]. These distortion
parameters are estimated to describe the non-linear

distortion over the two-dimensional photo plane.

After the distortion parameter estimated, these
parameter is used to calibrate the new coming photos.
The coordinates of the pixel in the photo can be
calibrated one by one and the distortion caused by the
lens can be significantly mitigated. For the
smartphone, camera calibration is particularly
important since its lens is not as good as the

professional camera.

4.3 Feature Matching

The second step to extract the visual range is
feature matching. The target of feature matching is
obtaining the absolute coordinates of the feature in
the feature database. In order to automatically
matching the features, a feature database with labeled
data should be established. The feature matching
procedure is similar to look up the dictionary. At first,
extracting features from the newly captured photos,
then automatically find the best matches in the
database. Since the illumination condition and the
view angle of the new photo and the database may
not the same, so it is important to select the features
and the matching algorithms. There are many feature
matching  approaches, such as the gray
intensity-based approach, edge contour-based and
corner detection-based approaches [42], while some
of them only perform well for a particular type of
image. In this paper, the Scale-invariant feature
transform (SIFT) [43] feature detection and matching
algorithm is adopted due to its outstanding
computation stability in the case of illumination,
rotation and scale change. Figure 5 gives an example of
the matched features in two photos. The two photos
have different view angles and the same features in
the two photos are connected with solid lines. If there
is no feature matched in the database, then the feature
extracted from the new images will be discarded. If
the feature is matched successfully, the known
coordinates in the database will be given to the
features in the new photo, so that the connections
between the 2D photo plane and the 3D real world
are established. In the future, the feature database can
be replaced with a measurable 3D map, so that it can
be used for large-scale feature matching to support
autonomous driving applications.

Figure 5 Example of matched features using SIFT

features in two photos with different view angles.

4.4 Visual Range Estimation



With the coordinates of the features known, the
extrinsic elements of the camera can be estimated.
The visual range estimation is based on the principle
of space resection in photogrammetry. In Figure 2,
the coordinates of the visual pseudolite A and the
camera focus S in the real-world coordinate system
are denoted as (X, Ya, Z,) and (Xs, Ys, Zg). The
coordinates of the corresponding feature a in the
image plane coordinate system are denoted as (x, y,
-f). Based on the collinear condition equation, the
observation equation of the known point A can be
expressed as [44]:
ai(X — Xs)+b1(Y = Ys) +ci(Z — Zs
xoxo==f asgx - Xs; i b3iY - Ys; T c3((Z - Z))

a2(X = Xs)+b2(Y = Ys)+c2(Z — Zs)
T a(X = Xo) + b3(Y — Vo) + c3(Z — Zy)

©

y-yo=

where a;, b; and c; (i=1,2,3) are nine direction cosines
of attitude parameters y, ® and «.

The six exterior orientation elements (Xs Ys Zs. v,
o, k) can be obtained through the coordinates of more
than three non-collinear visual pseudolite. The
collinear condition equation can be expanded by the
Taylor series and the obtained linearized observation

equation can be shown as:

X=X +gd(p+6—xdw+a—xdlc+a—des+ﬁdYs+a—des
op ow oK 0Xs s Zs

10
a—yd¢+gdw+gdx+%d)ﬁ+@dYs+a—des (10)
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In order to ensure the accuracy and reliability of
parameter estimation, it is usually necessary to
measure four or more image control points and
corresponding image point coordinates, and use the
least square adjustment method to solve the problem.
At this time, the coordinates of image points (X, y)
are taken as observation values, and the error
equation of each image point can be listed as
vx = andXs + and¥s + avdZs + audp + asd o + arsd K — Ix } (11)
vy = andXs + and¥s + andZs + and o + axd o+ axdk —ly
where these coefficients can be referred to [44].

Using the least-squares method to solve the

exterior orientation elements can be given as
0 =A"PA) (4T P (12)

where A4 represents the design matrix and P is the

weight matrix of the observation value and |

contains the observation information.

Based on the exterior orientation elements, the
approximate coordinates of the camera can be
calculated, which is used to figure out the distance
from the camera to the target points with the accurate
coordinates of the target points together.

In general, the longer the visual range between
the camera and the visual pseudolite, the lower the
accuracy of external orientation elements and
position solution. So the variance of the distance
observation value can be determined by establishing
an empirical model according to the distance of

observation.

5. Experiments

The performance of the proposed approach was
verified with the experiments in the Wuhan
University campus. The method is evaluated by
images in outdoor scenarios and compared with other
methods. Meanwhile, we will discuss the effect of

different factors on the performance of the method.
5.1 Experiment Setup

A test field was set up on the Youyi square on
the campus. The distance from the observation point
to the target building varies from 50 m to 100 m. The
GNSS data and the pictures are collected with a
RedMi k30 ultra smartphone. The smartphone was
put on a tripod for the GNSS data collection and the
skyplot of the tracked GNSS satellite is presented in
Figure 6. Signals from 10 GPS satellites are tracked
and only pseudorange on L1 frequency is used for
positioning in this study. In the experiment, only two
or three GNSS satellites are used to simulate the
GNSS denied environments. Based on GNSS static
data, the ground truth of the position is determined by
Post-processing kinematic (PPK) technique which
can achieve high-precision results. A feature database
was established with a set of historical image data.
The features were extracted from these images and
their true coordinates in the WGS84 coordinate
system were obtained by combining GNSS and the
total station. The absolute coordinate of the total
station site was computed by GNSS relative static
positioning. The international GNSS service (IGS)



station WUH2 station is used as the reference station,
which is only a few hundred meters far away from
the experiment site. The precise coordinate of the
WUH2 station is precisely known. Two GNSS points
are measured in the test site. One is the total station
site and the other one is used as the back sight. A
Leick GS60 prism-free total station was used to
precisely obtain the coordinates of the visual
pseudolite. The visual pseudolites are randomly
distributed on the wall or the ground. The features
extracted from new photos would be matched by
comparing with the established feature database and
the corresponding visual ranging information would

be calculated.

Figure 6 Experiment setup (left) and the skyplot of
the tracked GNSS satellites (right)

5.2 GNSS/VL integrated Positioning performance

In order to evaluate the effectiveness of the
proposed method, the positioning solutions estimated
from GNSS-only positioning, visual-only, and
tightly-coupled methods were compared. In the
GNSS-only positioning scheme, all tracked GNSS
signals by the smartphone were used. In the
visual-only positioning scheme, all the matched
feature points are involved to solve the user position.
In GNSS/vision tightly-coupled positioning scheme,
only three visible satellite is selected to simulate the
GNSS denied environment. In this study, GNSS
signals from satellite G22, G09 and G31 are used.

GNSS and image data were collected on 4
different sites using the same smartphone in this
experiment, the positioning results and the matched
feature location are presented in Figure 7. The figure
presents the position obtained with the visual
localization-only, GNSS-only and tightly-coupled
solution respectively. The true coordinates were

computed with the static relative GNSS data
processing. Most features in this experiment are
located on the building wall. Each image may only
contain a portion of the features. The figure indicates
that all the three positioning schemes achieve meter
level accuracy, but the tightly-coupled solution is
closer to the reference solution than the other two

solutions.

Flgure 7 Posmonmg results of dlfferent positioning
schemes

The root mean squares error (RMSE) of the
three positioning schemes are listed in Table 1. The
table indicates that smartphone-based GNSS
positioning achieves several meter level accuracy and
the up direction achieves the poorest positioning
accuracy. With enough ‘visual pseudolites’, the
visual-only positioning algorithm also achieves meter
level accuracy as well and the visual-only positioning
achieves the best accuracy in the up direction. In the
tightly coupled solution, the positioning accuracy
inherits the advantages of both techniques and thus
achieving the best precision accuracy among all the
three positioning schemes with its 3D RMSE 5.561m.
The table also indicates that the integration of the
visual range can achieve fairly good positioning
results even in 3 visible GNSS satellite scenarios.

Table 1 Comparison of the position accuracy (RMSE)

using different positioning schemes

Direction GNSS VLOnly GNSS/VL
Only
North 2.463 m 4.269 m 2.758 m
East 4176 m  6.350 m 4.641 m
Up 9988 m  0.534m 1.334m
3D 11.103m  7.671 m 5.561 m

An example of the positioning error time series



using the GPS-only and GPS/VL is presented in
Figure 8. The figure explained how did the GPS/VL
combined system improves the GPS-only positioning
accuracy. Due to the poor quality of the smartphone's
built-in GNSS antenna, the GPS-only positioning
time series is quite noisy. By integrating with the
visual range from images, the accuracy in the north
direction and the up direction was dramatically
improved, while the positioning accuracy in the east
direction did not improve much, which may due to its
poor observability in the visual ranging system.

For the tightly-coupled positioning method,
when the number of observable satellites is
insufficient, the visual ranging information will be
involved in the positioning process as pseudo
satellites. The positioning accuracy is improved
(27.5%) that
positioning and is more significantly improved
(49.9%) subject to the GNSS-only solution. In detail,
the method of tightly-coupled GNSS/vision ensures

compared with of visual-only

that the positioning error in each direction is within a
certain range, to provide stable and high-precision
positioning results in GNSS-hostile environments.

VL/GNSS

o 100 200 300 400 500 600
Time Elpsed(s)

Figure 8 Positioning error time series comparison of the
GNSS and GNSS/VL combined positioning.

5.3 Impact of visible GNSS satellite number on the
positioning accuracy

In order to investigate the performance of the
tightly-coupled approaches in the GNSS denied
environment, we designed an experiment to
investigate the positioning accuracy with different
the

positioning error of the tightly coupled positioning

visible satellite numbers. Figure 9 shows
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method with different visible GNSS satellite numbers.
We selected two visible GNSS satellites and three
visible GNSS satellite scenarios respectively and
integrating the GNSS signals with the visual ranges
from different images and then evaluate their
positioning accuracy. Since different images have
different feature numbers, so the positioning accuracy
is different. The RMSE of positioning results from
different numbers of satellites are summarized in
Table 2. The results show that 3 visible satellite
scenario generally achieves better accuracy than the 2
visible satellite scenarios. With 3 visible GNSS
satellites, the precision improvement achieves about
33.5%~57.3%, which indicates the GNSS satellite
has a substantial contribution to the integrated
positioning results, particularly when the GNSS
visible satellite number is small. The number and the
geometry of the visual pseudolite also have an impact
on the final positioning accuracy. Integration of one
GNSS signal with the visual ranges is meaningless
since the GNSS signals have no contribution to the
positioning results due to the presence of the receiver
clock parameter. For more visible satellite number
scenario, GNSS can provide positioning service alone,
but integrating with the visual ranges still benefit for

the precision improvement in the up direction.

[ with two satelliies
B with three csateliites|

Nim} E{m)

uUm)
=
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Figure 9 Positioning error of tightly-coupled method

with different visible satellite number

Table 2 Comparison of the positional RMSE of the
tightly-coupled method based on different visible

satellite number

RMSE(m) | 2GNSS | 3GNSS | Improvement
satellites | satellites
North 6.703 4.458 33.49%




East 5.580 2.382 57.31%
Up 0.885 0.413 53.35%
3D 8.766 5.072 42.15%

5.4 Feature number impact of the positioning

accuracy

There is no doubt that the matched feature
number is an important factor for the tightly
combined positioning system. An experiment was
designed to investigate this problem. We selected 3
visible satellites in this experiment according to the
discussion in section 5.3. We tested 3 visual GNSS

satellites combined with 5, 7 and 9 visual pseudolite

respectively and the results are presented in Figure 10.

In this test, 11 images are used in the data processing.
The figure shows that more visible pseudolite may
improve the tightly coupled positioning accuracy, but
it also depends on the geometry distribution of the
visual pseudolite. For example, 7 visual pseudolite
cases did not achieve precision improvement in the
east direction comparing to the 5 visual pseudolite
cases. 9 visual pseudolite case even achieves poorer
accuracy in the up direction than 7 visual pseudolite
cases. It concludes that more visual pseudolite may
improve the positioning accuracy, but it also depends
on the geometry distribution of the visual pseudolite.
This conclusion may not hold for dense visual
pseudolite cases since the positioning accuracy will
convergence to the visual-only solution as the visual

pseudolite number increases.

mage 0

Figure 10 Positioning accuracy of tightly-coupled

method with different feature number

6. Conclusion

Positioning in a GNSS denied environment has
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been a challenge for a long time. This paper proposed
a smartphone-based GNSS/monocular camera
tightly-coupled positioning method to solve the
GNSS low positioning availability problem in
GNSS-hostile environments. With this method, the
feature points are viewed as ‘visual pseudolites’ and
the visual ranges are obtained via an image
processing procedure. Then, these visual ranges are
combined with the GNSS ranges to calculate the
The the

tightly-coupled approach was verified by a field test

user's  positions. performance  of
using a smartphone.

The results showed that the tightly-coupled
positioning method achieved about +5.6-meter (1o,
3D) GNSS-hostile
environments, positioning accuracy is
significantly higher than that of GNSS-only and

vision-only solutions. The tightly-coupled solution

positioning  accuracy in

and its

delivered a resilient solution in the GNSS denied
environment. In comparison with the GNSS only
the

dramatically improved the positioning accuracy in

solution, tightly-coupled  solution  has
the vertical direction. The tightly coupled positioning
accuracy varies with the number of the feature points
and the visible GNSS satellites.

This paper only builds a proof-of-concept
system to verify the validness of the tightly coupled
approach, many issues are not remained unconsidered
in this study due to the time limit, e.g. the distribution
form of feature points, the synchronization of the
GNSS and the camera, the positioning performance
in the mobile platform, etc. With an improved feature
matching algorithm, it is possible to integrate the
GNSS ranges with the real-time video to conduct
kinematic positioning. A measurable 3D map can also
be added to substantially improve the service
coverage of the tightly coupled solution and these

topics will be in our next step.
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