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Abstract

Over the past decades, the integration of a MEMS-based
(Micro-Electro Mechanical Systems) Inertial Measuring
Unit (IMU) with a GNSS receiver-chip has become
commonly used navigation techniques by virtue of their
advantages such as small sized, light weight, with low
power consumption, and have extremely low cost. To
provide accurate and reliable positioning solutions with a
low-cost GNSS/MEMS INS system, it is valuable to
introduce specific auxiliary information that can improve
the navigation performance without adding extra
hardware costs. The auxiliary information is especially
useful during GNSS outage periods or when the
vehicle is moving with low dynamics (e.g. no change of
attitude and accelerations) which lead to the poor
observability of the GNSS/INS navigation system.
For LVN applications, Non-Holonomic Constraints
(NHC) is one of the most common types of auxiliary
information.

This paper focuses on studying the contributions of
the NHC from the perspective of observability, which
provides a deeper insight and shows how the NHC
improves the navigation solutions. Considering several
typical vehicle dynamics, it is also clear to see the effects
of the NHC to the inertial navigation under different
situations. Both theoretical analysis and simulation tests
have shown that the contributions of the NHC to the
estimation of a certain state depend on both the current
vehicle dynamic and the relative error magnitude of this
state compared to the coupled state under the current
vehicle dynamic; both the accelerating and turning
motions can enhance the contributions of the NHC to the
estimation of both the yaw and the pitch, and such
contributions will be stronger with a higher vehicle
speed; the NHC has significant effects on controlling the
roll in all motion status. Furthermore, the effects of the
NHC on the estimation of the biases of both gyroscopes
and accelerometers are also analyzed. The outcomes of
this paper show that the proposed observability analysis
is beneficial to the utilization of NHC or other priori
information in low-cost navigation systems.

Keywords: GNSS/INS, non-holonomic constraints,
observability, inertial measurement unit (IMU), inertial
navigation

1. Introduction

GNSS (Global Navigation Satellite System) and INS
(Inertial Navigation Systems) have different advantages
and can be integrated to provide a variety of navigation
information which is precise, reliable, and with high data
rate (EI-Sheimy 2006). A GNSS receiver is mainly used
to provide position of the vehicle in ideal conditions, but
has certain limitations in urban areas (e.g., city
downtown), inside tunnels and under heavy tree
canopies. An inertial navigation system measures the
specific forces and angular rates by accelerometers and
gyroscopes (gyros) and determines the motion of a body
with respect to an inertial frame of reference (Titterton
and Weston 1997). By virtue of its advantages such as
high update rates as well as high precision and reliable
measurements over a short time period, INS has always
been presented as a valuable system in many Land-
Vehicle Navigation (LVN) applications. Especially
during the past few decades, advances in Micro-Electro-
Mechanical Systems (MEMS) technology combined
with the miniaturization of electronics (Karumuri et al
2011), have made it possible to produce chip-based
inertial sensors for use in measuring angular rate and
acceleration. These MEMS chips have become ideal
candidates for various applications because they are
small, light weight, low power and are extremely low-
cost and reliable (EI-Sheimy 2006). At the same time,
the cost reduction of GNSS receiver has also promoted
the development of low-cost navigation techniques. The
integration of a MEMS-based Inertial Measurement Unit
(IMU) with a GNSS receiver-chip provides a navigation
system that has several advantages over each individual
system. In such integration, the GNSS-derived positions
and velocities are updating the MEMS sensors through a
Kalman Filter (KF) while the IMU is used to provide the
navigation information during GNSS signal outages and
for fast GNSS signal reacquisition (Niu et al 2007).
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GNSS/MEMS INS integrated systems have become one
of the most commonly used navigation techniques.

However, the performances of the MEMS sensors are
highly dependent on the environmental conditions such
as temperature variations (Aggarwal et al 2008). During
the GNSS outages in challenging environments such as
in urban canyons, a MEMS INS will lose its accuracy
quickly due to the large bias instability and noise of low-
cost MEMS sensors. The accuracy limitation of low-end
navigation techniques (e.g. MEMS IMU, GNSS chips
etc.) becomes one of the obstacles for their development
and applications.

Therefore, special considerations are required to provide
accurate positioning solutions with a GNSS/MEMS INS
system. One direct method is adding other low frequency
absolute sensors (e.g., GNSS dual antenna systems,
wheel and steering encodes, magnetic compass, etc), so
as to bound the increasing positioning errors associated
with the high frequency inertial sensors (Skog and
Handel 2009). This kind of method is quite effective but
relies on additional sensors, which is not affordable for
many low-end land-based navigation systems.

From the perspective of the navigation system designers,
there are also several approaches especially valuable for
the low-end navigation systems due to their
independence of hardware costs. The first approach is to
improve the navigation algorithms used. Examples of
such algorithms implement an unscented KF (Shin 2004)
or use neural networks (Chiang 2004). Another approach
is to improve the stochastic modeling of the MEMS
inertial sensors (Nassar and EI-Sheimy 2005a).
Moreover, a third method is to enhance the quality of the
MEMS data through techniques such as de-noising
(Nassar and EI-Sheimy 2005b). The fourth and
commonly used approach is to introduce priori
information about the navigation systems (e.g. control
inputs, vehicle dynamic models, kinematic constraints,
the road information etc.), which can play significant
roles in generating information and reducing estimation
uncertainty. One application of this approach is to
introduce auxiliary update information (or constraints) to
the MEMS sensors to improve KF error estimation and
compensation especially during GNSS signal blockages
(Dissanayake et al 2001, Syed et al 2008, Niu et al
2010). In this paper, this approach will be investigated in
detail. For LVN applications, the most common types of
auxiliary information used include Non-Holonomic
Constraint (NHC), Zero-Velocity Update (ZUPT), Zero
Integrated Heading Rate (ZIHR), etc. (Shin 2005). This
paper will focus on the NHC, which is the most typical
one among these constraints.

According to the observability analysis of the errors in a
GNSS/INS integrated navigation system, all the errors
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can be made observable by maneuverings (Hong et
al 2005). However, the land-based vehicles do not have
sufficient maneuvers all the time, which will
cause observability problems. During most of the time, a
car moves straightforward with small velocity variations.
Under this condition, the yaw is unobservable or weakly
observable even when there are GNSS updates (Porat
and Bar-ltzhack 1981). Once the GNSS signal was
blocked, the yaw would diverge even faster. The
degradation of the yaw angle will affect the position
estimates directly. Therefore, it is beneficial to use NHC,
which refer to the fact that unless the vehicle jumps off
or slides on the ground, the velocity of the vehicle in the
plane perpendicular to the forward direction is almost
zero. It had already been shown by real tests that both
the position errors and the attitude errors were reduced
significantly when the NHC were used (Niu et al 2007).

Although it is widely known that the NHC can improve
the navigation performance (Dissanayake et al 2001, Niu
et al 2007), there is relatively less theoretical analysis to
their contributions. Observability analysis is an effective
tool to study the ability of estimating the states of a
system. It provides a deeper insight into the navigation
algorithms.

This paper tends to analyze the contributions of the NHC
to the estimated states from the perspective of
observability. It will show how the NHC work in the
navigation algorithms. Combining with several typical
vehicle dynamics, it is also clear to see the effect
of NHC under different situations. Then it is beneficial
to grasp this widely used constraint and maximize its
effects, so as to promote the better utilization of NHC or
other priori information.

Comparing with the previous works, this paper focuses
on analyzing the contributions of the NHC to the specific
estimated states from the perspective of observability. In
the rest of this paper, the navigation algorithms,
observability analysis and the simulation method will be
explained in turn, followed by the simulation results and
conclusions.

2. Navigation Algorithm

As shown in Fig.1, the NHC is added into a loosely-
coupled architecture of GNSS/INS integration algorithm.
Here the reference frame to implement the navigation
reference frame is the local-level-frame (n-frame, North-
East-Down), and the corresponding IMU body frame (b-
frame) is  Forward-Right-Down. The  GNSS
measurements updates are not used, so as to focus on the
evaluation to the contributions of the NHC.
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Fig. 1. Architecture of the navigation algorithm

A 15-state Kalman Filter (KF) is designed with the state
vector given in (1), which can estimate and compensate
the sensor biases online (Shin 2005). The bias
instabilities of sensors are modeled as the 1%-order
Gaussian-Markov process.

or"
ov"
X=| " (D)

where,
dr" s position error vector of INS mechanization,
V" s velocity error vector of INS mechanization,

®" s attitude error vector of INS mechanization,

bg is the bias vector of gyros, and

b, isthe bias vector of accelerometers.

The NHC is applied as the KF update measurement in
the navigation algorithm. As defined in (Bloch et al
2005), non-holonomic systems are mechanical systems
with constraints on their velocity that are not derivable
from position constraints and arise in mechanical
systems that have rolling contact or certain kinds of
sliding contact. Therefore, in the case of LVN, the NHC
refer to the fact that unless the vehicle jumps off the
ground or slides on the ground, the velocity of the
vehicle in the plane perpendicular to the forward
direction is almost zero (Dissanayake et al 2001). Since
this constraint is specifically related to wheeled vehicles
moving on a surface and is a function of the vehicle state,
interaction between the vehicle and the terrain, engine
vibrations, and the suspension system, it is non-
holonomic. Supposing that the IMU is mounted aligned
with the vehicle, this constraints can be regarded as zero

velocity update (or ZUPT) along the lateral and vertical
axis of the vehicle (right and down), i.e.

b b
v,~0andv, =0 ¥}

b b - . . .
where vy and Vv, are the velocity projection in the body

frame (i.e. vehicle frame) along cross-track and vertical
directions of the vehicle.
The measurement equation of the INS/NHC system can
be written as (Shin 2001)

SV° =CloV" —C2(V"x)D" 3)
where,

SV® s the velocity error vector in the b-frame
(obtained by the NHC, only the second and third rows
are used),

Cﬁ is the rotation matrix from the n-frame to the
b-frame,

OV" s the velocity error in the n-frame,

(vV"x) s the skew symmetric matrix of the velocity
vector in the n-frame, and

" is the attitude error vector in the n-frame.

3. Observability Analysis

3.1 Observability definitions

Observability describes the ability of estimating the
states of a system (Ham and Brown1983). According
to (Hong et al 2005), for a linear continuous-time system

T R(t) = A)X(t)
z(t) = C(t)x(t)
where A(t) and C(t) denote the nxn dynamic
matrix and the P x N design matrix, respectively.
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The observability analysis can be treated as finding a
state vector X(t) so that

z(t) = N, (t)x(t) =0

&t) = N, ()x(t) =0
M 4)

2(6) = N, ,(OX(0) =0

For a time t>1t,, if there is no nonzero state that
satisfies the above conditions, then the system is
observable at t,. Otherwise, any nonzero state X, (t)

would be an unobservable mode of the system. N, (t),

N,(t) ... N,,(t) are a sequence of pxn
observability matrices defined by the equation

N, ..(t) =N, ()A() +%Nk(t), k=0,12,..,n—2

N, (t) = C(t)

There are also other definitions and doable methods for
observability analysis (Ham and Brown 1983, Bar-
Itzhack and Porat 1988, Goshen-Meskin and Bar-Itzhack
1992). In this paper the definition by Hong (2005) is
applied to make the analysis.

3.2 Navigation error model in the body frame

Since NHC is the velocity constraints in the b-fame (i.e.
body frame), the theoretical analysis is presented in the
b-frame to make them simpler. First the navigation
equations of an INS/NHC system are introduced. To
simplify the analysis, the land-based vehicle is assumed
to move on a flat surface and the IMU (b-frame) is
aligned with the vehicle frame. Then both the roll and
pitch angles of the IMU are treated as zero. In addition,
as low-grade inertial sensors are used, the angular rates
caused by the earth rotation and by the vehicle motion
are both ignored.

Based on the navigation equations illustrated in (Shin
2005) and the simplifications above, the following
continuous-time state equations of velocity and attitude
in the b-frame are derived. As the NHC is velocity
constraints, they do not bring direct constraints on the
vehicle position (Dissanayake et al 2001). Thus the state
equation of position is not introduced.

ov° =F,8v" +F,0° +b, 5)
¢’ =F, " -b, (6)
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where,
0 w O
F, = F¢¢ =l-o, 0 0],
0 0 O
0 g f
F,=|-9 0 -—f,
-f, f, 0

where @, is the vertical angular rate of the vehicle (i.e.
the vertical component of the angular rate of the b-
frame with respect to the n-frame). fX and fy are the

acceleration of the vehicle in the forward and cross-
track directions, respectively. ¢ is the value of the

local gravity.

The sensor biases are regarded as random constants in
the analysis.

& =0 Y
B =0 ®)

And the measurement vector is
b b’
z(t) = [5vy oV, } 9)
b b :
where 5Vy and OV, are the velocity errors along the y-
axis and z-axis in the b-frame, respectively.

3.3 Observability analysis of INS/NHC system
From the definitions and the navigation equations above,
it is clear to see that the observability of the estimated

states is impacted by f,, f , @, and their time

derivatives. That is, the observability properties depend
on the specific force and angular rate of the vehicle. For
the wvarious trajectories in reality, the complexity
of vehicle maneuvers will lead to the time-varying of the
system process equations, which makes the theoretical
observability analysis much more complicated. To make
the analysis feasible, four typical dynamics of land-based
vehicles (i.e. static / uniform linear motion, variable
rectilinear motion, uniform circular motion, and variable
angular rate) are considered. The contributions of NHC
under different motions are investigated respectively.
Here the observable analysis focuses on the attitude
estimation and the IMU sensor errors, which are the
essential parameters for inertial navigation.
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Observability under stationary state or uniform
linear motions (i.e., f, = fy =w,=0):

Under stationary state, the time derivatives of the
measurement equations show that the observable terms
are

ov,, OV,
bay_g¢x' baz’
and gb,,

where b and b, (i =Xx,y,z) represent the biases of

the i-axis gyro and accelerometer, respectively.
¢ (i =X,Yy,2) is the attitude error in the b-frame. These

notations are applied in the rest part of this paper.

It is clear that the roll error times gravity and the y-axis
accelerometer bias error are jointly observable. The state
in these two items that has larger error will get more
chance to be corrected. The roll can be controlled to the
similar level with the y-axis accelerometer bias error
divided by the gravity value. Also, the x-axis gyro bias
and z-axis accelerometer bias can be estimated well,
while the other states are unobservable.

Observability under variable rectilinear motions (i.e.
f,#0, f,=w,=0):
The observable terms are

ov,, ov,,

y

bay - g¢x - fx¢z’ baz + fx¢ )
gng + fxbgz - f%¢z’ - fxbgy’
fngbgz - %z' - %bgy'

when the velocity of vehicle changes, both the yaw (¢, )
and the pitch (¢y) can be estimated because of the

resultant projection of the specific force onto the y-axis
or z-axis. Specially, both the yaw and the pitch can be
further distinguished from their coupling states when f,

changes. On the contrary, the observability of the roll
would be disturbed by the inclusion of the term—f ¢, .

Similarly, it is possible to enhance the estimates of both
the y-axis and z-axis gyro biases, i.e. bgy and bgZ .

Observability under uniform circular motions (i.e.
f,=0, o, =constant and f =ew,v,):
The observable terms are
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ov,, ov,,

y
b, — 94, —w,0v,, b, -4,
gby, — @, (b, + 94,) - @,96, — @] (6V, +V,8,),
oN, (b, —o,9,),
Za)zg(bgy +0,4,)— a)zz (bay - 09, — begZ —m,0V,),

C()ZZVX (bgy + a)z¢x)1

when the vehicle experiences a uniform circular motion,
both the yaw and pitch estimation can be enhanced.
However, due to the constant vertical angular rate, the
whole observable terms cannot be divided into separate
observable states; thus the contributions to the yaw and
the pitch also depend on their coupled states and may be
obscured. It also shows that the unobservable part of the
yaw is coupled with the velocity error along the cross-
track direction. Since the coefficient of the yaw error is
the speed of the vehicle, the larger the speed, the better
the observability of the yaw; On the contrary, the NHC
will have little effect under a low vehicle speed or zero
speed.

Observability under variable angular rates (i.e.
®, # constant ), the observable terms are

ov,, ov,,

y
b,, — 94, —®,0v,, b, - {4,
gby, — @, (b, + 9¢,) — @,98, — @] (6V, +V,8,) — &SV,
oV, (b, -o,¢,) - AR
2w,9(by, + @,8,) - a)z2 (b, — 94, —Vv,b, —®,0V,) +...
~a%[2b,, +394, +3w,(6v, +V,8,)],
oV, (b, + @,8,) + &V, (b, - 0,4,) - & 4,

As the vertical angular rate changes, it is possible to
distinguished the coupled item 6v +v,4, from its

whole coupling term, which means this coupled item can
be estimated. Also, the pitch estimation can be enhanced
because of the change of the vertical angular rate.

It is illustrated by the analysis above that

1. The contributions of NHC on a certain state depend
on both the current vehicle dynamic and the
relative error magnitude of the coupled state under
the current vehicle dynamic. The state with a
distinctly larger error can be corrected with
priority.
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2. The NHC can enhance the estimation of the yaw
and pitch while the vehicle is turning or changing
its forward speed. This property is especially
important when the land vehicle is moving in the
tunnel without the aid of GNSS. Any accelerating
or turning motions will enhance the NHC
contributions to the estimation of both the yaw and
the pitch. However, the contribution to the yaw
will be weak with a low vehicle speed or zero
speed.

3. The NHC has significant effects in controlling the
roll, especially under low vehicle dynamics (e.g.
static or uniform linear motions).

4. The gyro biases along cross-track and vertical
directions (y and z axis) of the vehicle can be
estimated when the vehicle is accelerating or
turning. By contrast, the forward gyro bias has
strong observability under low vehicle dynamics
but may be disturbed while accelerating or turning.

5. The unobservable part of the accelerometer biases
along the cross-track direction always couples with
that of the roll; the forward accelerometer bias can
only be estimated when the vehicle turns, and it
couples with the pitch then; the vertical
accelerometer  bias has  relatively  better
observability, especially under low vehicle
dynamics.

In order to verify the theoretical analysis, corresponding
simulations and covariance analysis were carried out.

4.  Simulation Analysis Method

The whole simulation analyzing process included two
parts: simulation and error analysis. The simulation
process was done by the GNSS/INS simulation software
developed by the GNSS Research Center at Wuhan
University. The block diagram of simulation is shown in
Fig. 2. The simulation was mainly comprised of
trajectory generation and the modeling of both the IMU
and GNSS errors. The NHC was used as the

measurement update, instead of the GNSS measurements.

The error analysis includes the navigation computation
and the covariance analysis.

5. Simulation Tests and Results

5.1 Simulation tests

A series of maneuvers were simulated to cover the
typical dynamics mentioned above. The trajectories are
described in Table 1. The error characteristics of
simulated IMU (typical MEMS grade) are shown in
Table 2. The simulated motion information is shown in
Fig. 3. The four subplots denote horizontal trajectory,
velocities (in the n-frame), specific forces and angular
rates (both in the b-frame), respectively.
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Trajectory

. IMU Performance
Information

GNSS/INS
Simulator

Reference Navigation

Information (i.e. position, IMU Outputs

velocity and attitude)

Error Analysis Kalman Filter

Covariance

Actual Errors Analysis

Fig. 2. Block diagram of the simulation and error
analysis

Table 1. Simulated vehicle motions
Time segmentMotion description

(Sec)

0-60 Static

60-70 Forward speed increases linearly in time
(acceleration = 2 m/s?)

70-130 Uniform linear motion (speed = 20 m/s)

130-140 Forward speed decreases linearly in time

(acceleration = -1 m/s?)
140-150 Turn +90 degrees with constant angular
acceleration

150-180 Uniform linear motion (speed = 10 m/s)

180-240 Motion with sinusoidal varying
forward acceleration (forward acceleration changes
with Amplitude = 4m/s? and Period = 20s)

240-250 Uniform linear motion (speed = 10 m/s)

250-310 The first 3 second angular rate rises from 0 to 18
deg/s; then uniform angular motion (angular rate
=18 deg/s); the last 3 second angular rate falls to 0
deg/s

310-320 Uniform linear motion (speed = 10 m/s)

320-380 Motion with sinusoidal varying angular rates

(speed = 10 m/s; angular rate changes with
Amplitude = 36deg/s and Period = 20s)

Table 2. Simulated IMU characteristics

Simulated errors Values of errors

IMU Gyro bias instability
Markov process
6=36 °/hr, =100 sec

Gyro white noise (ARW) 0.3 deg/sqrt(hr)
Accel. bias instability
Markov process
6=1000 mGal, =100 sec
Accel. white noise (VRW) 0.12 m/s/sqgrt(hr)
Data rate 100 Hz

Modeled as first-order Gauss-

Modeled as first-order Gauss-
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Fig. 3. Simulated trajectory, velocities, specific forces
and angular rates

5.2 Simulation results and analysis

The IMU data simulated above were processed by the
navigation algorithm described in Section 2.1, with only
the NHC updates. The standard deviations of the
velocity measurements from the NHC were set as 0.1
m/s. Here the simulation results analysis will focus on
the attitude estimation and the sensor errors estimation,
since they are the key states that have an impact the
navigation performance. The curves of the attitude errors
(i.e. the standard deviations of estimated errors given by
Kalman filter) and the sensor biases errors are shown in
Fig. 4 and Fig. 5, respectively.

According to Fig.4 and Fig.5, during the whole
navigation process (380 sec), the NHC constrains all the
attitude errors: the yaw error under 6 deg, the pitch error
under 1 deg and the roll error under 0.5 deg, which is
remarkable for a typical low-cost MEMS IMU without
GNSS updates. Specifically, the NHC has different
contributions to the estimation of both attitudes and
sensor biases under different dynamics, as shown by the
theoretical analysis above. Details of these phenomena
are commented as follows.
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When the vehicle was stationary in 0-60s, x-axis gyro
bias converged rapidly as well as z-axis accelerometer
bias. The estimate of the roll was also enhanced to the
similar magnitude as the y-axis accelerometer bias error
divided by the gravity value. However, neither the pitch
nor the yaw was enhanced because of their poor
observability.

The vehicle began to move and speed up during 60-70 s,
then both the yaw and the pitch were estimated, while
the roll was disturbed slightly.
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During 140-150 s when the vehicle was turning, both the
yaw and the pitch converged sharply, while the roll was
disturbed. At the same time, the estimation of the y-axis
gyro bias was enhanced while that of the x-axis gyro bias
was weakened.

During 180-240s when the vehicle experienced varying
accelerations, both the pitch and the yaw still showed a
diverging trend, which was not expected. This might be
because that the pitch and yaw errors had already
dropped to a relatively low level (compared with its
coupled states) in the previous dynamics. They looked
diverging, but this is actually because they were on their
way to the new balance points, which were larger than
their current level.

The yaw diverged in the last 120 s (i.e. 260-380s, the
vehicle made uniform angular motions or motions
with sinusoidal varying angular rates), which was also
not expected. This might be due to the fact that although
the vehicle made turnings during the last 120s, the
moving range of the vehicle was limited (as shown in
Fig 3) so that the vehicle was experiencing rather low
dynamics (as if no much motion within a small area).

Generally speaking, the simulation results in this section
match the observability analysis of the NHC/INS
integration for land vehicle applications.

6. Conclusion

The contributions of the non-holonomic constraints
(NHC) for inertial navigation have been studied from the
perspective of observability. The effects of the NHC to
each navigation states under different vehicle dynamics
have been analyzed separately. Both the theoretical
analysis and the simulation tests have shown that the
contributions of the NHC to certain navigation state
depend on both the current vehicle dynamic and the
relative error magnitude of the coupled states under the
current vehicle dynamic; both the accelerating and
turning motions can enhance the contributions of the
NHC to the estimation of both the yaw and the pitch, and
this contribution will be stronger with a higher vehicle
speed; the NHC has significant effects on controlling the
roll in all motion conditions. Furthermore, the effects of
the NHC on the estimation of the IMU sensor errors
have also been analyzed in detail by the observability
analysis. The outcomes of this paper have shown that the
proposed observability analysis can be beneficial to the
full utilization of the NHC or other priori information for
inertial navigation.
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