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Abstract: This manuscript establishes a generic 
framework for comprehensive error analysis in 
discrete Kalman filtering with constraints, which 
systematically provides a complete set of algorithmic 
formulas along with demonstrating an alternative 
process of theoretical analytics of discrete Kalman 
filter. This constructive work aims extensively to 
standardize the formulation of Kalman filter with 
constraints. In analogy to the similar framework for 
standard discrete Kalman filter (without any 
constraints), the proposed framework specifically 
considers: model formulation vs. the error sources, 
the solution of the state and process noise vectors, 
the residuals for the process noise vector and the 
measurement noise vector, the redundancy 
contribution of the predicted state vector, process 
noise vector and measurement vector, and other 
relevant essential aspects, of which some of the 
features are essential to comprehensive error analysis, 
but are nonexistent yet in the primary algorithm in 
Kalman filtering with constraints. Besides, the 
algorithmic form of the Extended Kalman filter with 
constraints is also provided for practical purpose. At 
the end, specific remarks about the developed 
framework are given to emphasize on its usage to a 
certain extend. 

KEY WORDS: Kalman filter, state constraint, 
error analysis, generic framework, redundancy 
contribution. 

1. INTRODUCTION 

The Kalman filter is a recursive estimator that 
provides estimates of a group of selected states on 
the ground of a specific system model and 
measurements that are acquired over time. Its 
applications have steadily expanded in sciences and 
engineering since the 1960s.  

Usually, the Kalman filter consists of a system 

model associated with its modeling errors as  
process noises and a measurement model associated 
with measurement noise. However, there are also 
many circumstances under which a priori 
knowledge of a dynamic system leads to equality 
constraints that may be imposed on the system states 
in Kalman filtering. Examples of this include path-
constrained motion along roadways [Yang et al, 
2005; Hasberg et al 2012] and constant velocity 
motion of tracking targets [Alouani and Blair, 1991]. 
In multisensor integrated navigation, the states 
representing the attitude commonly involve specific 
constraints, e.g., the elements of the direction cosine 
matrix have to conform to orthonormality conditions 
and the elements in a quaternion vector or rotation 
vector have to be in unit norm. Apparently, the 
formulation of indirect observation (Least Squares) 
adjustment with constraints in Geodesy and 
Geomatics has been generally standardized [Mikhail, 
1970; Rao and Toutenburg, 1999; Wang, et al, 2019]. 
By contrast, the formulation on states-constrained 
Kalman filter is far from being standardized to the 
same degree. 

Constrained Kalman filtering by augmentation 
was first proven by Doran [1992], which has been 
considered as a seminal paper on the subject 
[Pizzinga, 2012]. There exist several dominant 
strategies to impose constraints on the system states 
in Kalman filtering, which are generally divided into 
three categories [Simon, 2010; Khabbazi and 
Esfanjani, 2014]: 
Reparameterization: this technique incorporates any 
system state constraints by reducing the 
parameterization of the system, through which the 
physical meaning of the system states may be lost 
[Simon, 2010].  
“Perfect” Observations: this technique treats the 
system state constraints as pseudo-observations with 
zero variance. Without further simplification, it may 
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cause numerical instability [Doran, 1992; Alouani 
and Blair, 1991]. 

Projection: this technique transforms the estimate of 
the system states onto a constraint surface [Khabbazi 
and Esfanjani, 2014]. Such transformation may be 
accomplished through projection of the system state 
estimate [Simon and Chia, 2002], projection of the 
system itself [Ko and Bitmead, 2007], or projection 
of the Kalman gain matrix [Teixeira et al, 2008]. 
State projection is the most commonly used method 
of imposing constraints on the system states in 
Kalman filtering [Khabbazi and Esfanjani, 2014]. 
The Kalman gain projection has been generalized for 
non-linear constraints [Xu et al, 2017]. These 
techniques may also apply their constraints less 
strictly by taking a weighted average between the 
constrained and the unconstrained solution [Baker 
and Thennadil, 2019], or by taking model 
uncertainty into account in the gain projection 
approach [Khabbazi and Esfanjani, 2015]. 

Besides, some other techniques have also been 
used to impose equality constraints in Kalman 
filtering that do not fit under the above mentioned 
three broad categories. Xu et al [2013] considered 
constraints a priori information that should also be 
incorporated into a system’s dynamic models. 
Ghanbarpourasl and Zobar [2022] utilized singular 
value decomposition to separate the system state into 
a deterministic (i.e. fully constrained) and a 
stochastic component. Pizzinga [2012] framed the 
constrained Kalman filter as a recursive least-
squares problem.       

Unfortunately, there is still a lack of generic 
algorithmic formulas directly for the standard form 
of the discrete Kalman filter with constraints in 
literature for conducting comprehensive error 
analysis. This motivates the authors to develop a 
complete set of the generic formulas for it, so that 
one can easily adapt to theoretical development and 
practical implementation.     

Following this introduction, this manuscript first 
summarizes the innovative alternate formulation of 
standard Kalman filter originally deduced by Wang 
[1997] and also specifically detailed and applied in 
[Caspary and Wang, 1998; Wang, 1997; Wang, 
2008, 2009; Wang et al, 2009; Wang et al, 2009; 
Gopaul et al, 2010; Wang et al, 2010; Qian, 2017; 
Qian, et al, 2015, 2016; Wang et al, 2015, 2021; 
Zhang et al, 2017]. Then, as the core of this 
manuscript, Section 3 systematically develops the 
theoretical aspects and practical algorithm in 
discrete Kalman filtering with constraints, which 
innovatively promote the comprehensive error 
analysis. Section 4 further delivers the proposed 
algorithm in the form of Extended Kalman filter 
with constraints. The manuscript ends with 
concluding remarks in Section 5. 

2. ALGORITHMIC FORMULATIONS OF 
STANDARD KALMAN FILTER 

In general, a Kalman filter estimates the state 
vector by minimizing its mean squared errors after 
the minimum variance principle or equivalently its 
weighted sum of the residuals squared after the 
Principle of Least Squares, on the basis of operating 
system and measurement models recursively.    

2.1 Standard form of Discrete Kalman filter 

Let us define the standard form of Kalman filter 
first. Consider a linear or linearized system 
described in state space and the data are made 
available over a discrete time series 

Nk tttt      10 ...,,...,,, , of which each time instant 
corresponds to an observation epoch and is simply 
depicted as Nk     1 0 ...,,...,,, . Without loss of 
generality, the formulation here omits the 
deterministic system input. 

At an arbitrary observation epoch k ( Nk   1 ≤≤ ), 
the system and measurement models are given as 
follows [Wang et al, 2021]: 

)(),()(),()( kkkkkkk wBxAx 111 −+−−=       (2.1) 

(or simply )()()1()()( kkkkk wBxAx +−=   (2.1a)) 

)()()()( kkkk ΔxCz +=                         (2.2) 

wherein )(kx , )(kz , )(kw , and )(k∆  are the n-
dimensional state-vector, the p-dimensional 
observation vector, the m-dimensional process noise 
vector, and the p-dimensional measurement noise 
vector, respectively, while ),( 1−kkA , ),( 1−kkB , 
and )(kC  are the nn× coefficient matrix of )(kx , 
the mn× coefficient matrix of )(kw , and  the 

np× coefficient matrix of )(kz , respectively. 
About the relevant stochastic information, 

))(,(~)( kNk Qow  and ))(,(~)( kNkΔ Ro are 
assumed, where ),( baN  represents a normal 
distribution with a and b as its expectation (vector) 
and variance (matrix). Between two different 
observation epochs, it is presumed to have 

Oww =))(),(( jiCov  and O=))(),(( jΔiΔCov  for 
( ji ≠ ), and Ow =))(),(( jΔiCov  for any i and j. 

Besides, the initial state vector is given as )(0x  with 
its variance matrix )(0xxD  and is independent of  

)(kw  and )(k∆ for any k, i.e., ),(( kCov w  
Ox =))0(  and Ox =))(),(( 0kΔCov . 

2.2 The Solution after Minimum Variance 
Principle 

Without any unnecessary repetition of the 
solution derivation, the Kalman filtering algorithm at 
k from k-1 upon the definition in Section 2.1 after 
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the minimum variance principle is directly 
summarized below: 

)()()1/(ˆ)(ˆ kkkkk dGxx +−=             (2.3) 

with its associated variance matrix 

)()()()]()([               

)1/()]()([)(

kkkkkI
kkkkIk

TT GRGCG
DCGD xxxx

+−⋅

−−=
  (2.4) 

wherein I is a nxn identity matrix and G(k) is a nxp 
Kalman gain matrix: 

)()()1/()( 1 kkkkk dd
T −−= DCDG xx                     (2.5) 

The predicted state vector (from the time update) 
and its variance matrix are as follows: 

)1/1(ˆ)()1/(ˆ −−=− kkkkk xAx                        (2.6) 

)()()(                         

)()1/1()()1/(

kkk
kkkkkk

T

T

BQB
ADAD xxxx

+

−−=−
     (2.7) 

The system innovation vector and its variance matrix 
are computed after: 

)1/(ˆ)()()( −−= kkkkk xCzd           (2.8) 

)()()1/1()()( kkkkkk T
dd RCDCD xx +−−=   (2.9) 

Essentially, the system innovation vectors: 
... ),( ..., ),2( ),1( kddd  are independent of each other 

[Chui & Chen, 1987], i.e., Odd =))(),(( jiCov  
( ji ≠ ). However, the elements in )( kd  at epoch k 
are not only correlated, but also blend all of the 
separate error sources. Traditionally, the error 
analysis has been centered on the system innovation 
series. In addition, it is proved that the estimate of 
the state vector )(kx  and the system innovation 
vector )( kd  are independent of each other based on 
(2.3) and (2.8), i.e., 

Okd =)(xD                                   (2.10) 

2.3 Alternate Formulation for Comprehensive 
Error Analysis 

Obviously, )(kd  is originated from the process 
noise series ...),(...,),(    1 kww , the measurement 
noise series ...),(...,),(    1 k∆∆  along with the initial 
state vector )(0x . Therefore, as a matter of fact, the 
system and measurement models in (2.1) and (2.2) 
are associated with three groups of independent 
stochastic information that is propagated into the 
state solution from time to time. Specifically at k, the 
system is contaminated by (i) the measurement noise 
vector )(kΔ , (ii) the process noise vector )(kw , and 
(iii) the noise associated with the predicted state 
vector from )1()1,( −− kkk xA , into which ..., ),1(∆

)1( −k∆  and  1),(w )(..., 1  −kw  starting with )(0x
are propagated through the recursive mechanism as 
in (2.1) and (2.2) from the past.  

Along two different paths, either after the 
Minimum Variance Principle or Least Squares 
Principle, the Kalman filtering algorithm is 
equivalently derived. A widely repeated derivation is 
to deliver the equivalent solution on the ground of 
the predicted state vector )1/( −kkx , as a pseudo-
measurement vector by merging (ii) and (iii) as in 
(2.1) in Least Squares approach, and the 
measurement vector )(kz  from (i). An apparent 
drawback to this formulation is that two groups of 
the independent stochastic information in (ii) and (iii) 
are blended into )1/( −kkx and are no more 
separable in  error analysis.       

To enhance the error analysis in discrete Kalman 
filtering, Wang [1997] proposed an innovative 
alternate formulation. Innovatively, the system state 
prediction in (2.1) was further split into two pseudo-
measurement vectors: 

)()1/(ˆ)1(ˆ)()( kkkkkk
xxllx DxxAl −=−=   (2.11) 

)(                               )()( 0 kkkw Qwl =        (2.12) 

with ow =)(k0  (zero mean presumed) and 

)()1()()( kkkk T
xx ADAD

xx ll −=           (2.13) 

The real measurement vector )(kz  remains as in 
(2.2) and denoted by )()( kk zlz = . 

The residual equations corresponding to (2.11), 
(2.12) and (2.2) are as follows: 

)()(ˆ)()(ˆ         )( kkkkk xx
lwBxvl −−=          (2.14) 

)()(ˆ                            )( kkk ww
lwvl −=          (2.15) 

)(                     )(ˆ)()( kkkk zl lxCv
z

−=          (2.16) 

with )(k
xx llD , )(kQ  and )(kR  as their 

measurement variance matrices, respectively, in 
which the state vector is extended to include the 
process noise vector )(kw  being estimated together 
with )(kx .   

In seeking for a Least Squares solution for 
)(kx  and )(kw , the cost function is constructed  

)()()()()()(          

)()()()(:
11

1

kkkkkk

kkkkg
T
z

T

T

ww zll

llll

vRvvQv

vDvmin
xxxx

−−

−

+

+=
(2.17) 

In (2.14), (2.15) and (2.16), there are (n + m) states 
and (n + m +p) measurements. The number of the 
redundant measurements remains unchanged, 
namely, p. It is not in question about the identity of  

)(kx  derived after (2.17) and the one in (2.3) [Wang, 
1997]. The beauty of this formulation lies in the 
feasibility for the direct analysis of the three original 
error sources at any epoch k. Especially, it allows for 
reliability analysis in discrete Kalman filtering 
[Wang, 1997, 2009]. For the benefit of the 
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presentation in next section, the outcome from this 
alternate formulation is summarized below: 

1) The solution of the state vector 
First, equations (2.3) – (2.9) in Section 2.2 remain 
unchanged to form the basis of the solution. 
Alternatively, (2.3) is also given as follows  

)]}()()()[()(){(  
)()()()/(

kkkkkk
kkkkk

wz

wx

lBlClK
lBlx

x −−+
+=     (2.18) 

Importantly, the process noise vector is estimated by  

)()()1/()()(     

)()(ˆ
1

0

kkkkkk
kk

xx
T dKDBQ

ww
−+

=
−

         (2.19) 

with its variance matrix 

)()()()()()()(  

)()(
1 kkkkkkk

kk

dd
TT QBCDCBQ

QDww
−−

=     (2.20) 

and its covariance matrix with the estimated state 
vector 

)()()()()()1/(  

)()()(
1 kkkkkkk

kkk

dd
T

xx

xw

QBCDCD
QBD

−−−

=
  (2.21) 

2) The residual vectors 

)()()1/()()( 1 kkkkkk xxll xxx
dGDDvl −= −           (2.22) 

)()()1/()()()( 1 kkkkkkk xx
T

w dGDBQv −= −      (2.23) 

)(])()([)( kkkk dIGCvz −=          (2.24) 

with their variance matrices 
)()()1()()()( 1 kkkkkk dd

T
xx xxxxll llllvv DCDCDD −= −   (2.25) 

)()()()()()()()( 1 kkkkkkkk dd
TT

ww
QBCDCBQD vv

−=  (2.26) 

)()]()([)( kkkk
zz

RGCID vv −=          (2.27) 

3) The redundancy contributions in measurement 
groups corresponding to (2.11), (2.12) and 2.2): 

)]()()()()1()([)( 1 kkkkkktrkr dd
TT

xxlx
CDCADA −−= (2.28) 

)()()1()()()([)( 1 kkkkkktrkr dd
TT

lw
BCDCBQ −= −    (2.29) 

)]()([)( kktrkrz GCI −=                        (2.30) 

For the entire system either after (2.1) and (2.2), 
or after (2.11), (2.12) and (2.2), the total redundancy 
number at epoch k satisfies [Wang, 1997; 2009, 
2021; etc] 

)()()()()( kpkrkrkrkr zll wx
=++=          (2.31) 

wherein )(kp  is the number of the real 
measurements or the dimension of )(kz . 

4) The individual redundancy indexes 
In practice, )(kQ  and )(kR  are commonly diagonal 
so that the individual redundancy indexes in 
components for the process noise vector are 

iidd
TT

w kkkkkkkr
i

)]()()()()()([)( 1 BCDCBQ −=  

))( ..., ,2 ,1( kmi =                       (2.32) 

and for the measurement vector 

iiz kkkr
i

)]()([)( GCI −=   ))(,...,,( kpi 21=     (2.33) 

Indeed, as )(k
xxllD  in (2.11) is not a diagonal matrix 

in general, no individual redundancy indexes in 
components become meaningful here for )(kxl .  

5) The variance of unit weight (the variance factor) 
)(/)()()()(ˆ 12

0 kpkkkk dd
T dDd −=σ                      (2.34) 

or 
++= −− )()()()()()([)(ˆ 112

0 kkkkkkk
ww

TT
llllll vQvvDv

xxxx
σ  

)(/)]()()(             1 kpkkkT
zz vRv −+                       (2.35) 

6) The posteriori variance matrix of the estimated 
state vector 

)()(ˆ)(ˆ kkk xxxx DD 2
0σ=                       (2.36) 

which directly reflects the latest available residuals 
due to the modeling and measurement errors. For the 
usage in (2.36), one can apply the epochwise 
variance factor as in (2.34) or (2.35), a regional 
variance factor, i.e., an average over a specific time 
period, or even a global variance factor from the 
entire data period [Wang, 1997, 2009; Wang et al, 
2021]. However, it is noticed that plenty of the 
applications with applying Kalman filter have 
inappropriately considered (2.4), instead of (2.36), 
as their posteriori state variance matrix.   

Refer to [Wang, 1997, 2008, 2009; Caspary and 
Wang, 1998; Wang et al, 2021] for more details 
about this alternate formulation and its advantages 
for error analysis in discrete Kalman filtering. 

3. GENERIC FORMULATION OF DISCRETE 
KALMAN FILTER WITH CONSTRAINTS 

This section provides readers with our original 
development of a generic formula set, which 
meaningfully serves as an innovative framework for 
comprehensive error analysis in discrete Kalman 
filtering with constraints in parallel with the one 
summarized in Section 2.3, and also describes their 
connections. In this work, the constraints are 
restricted to the equality constraints, 

3.1 The Functional and Stochastic Models 

Upon the models of the standard Kalman filter 
defined in Section 2.1, a Kalman filter with 
constraints indicates that there exist the following 
additional constraints among the states 

ohxH =−)()( kkT                         (3.1) 

wherein )(kH  is a n×h-dimensional coefficient 
matrix and hktr =)]([H  ( nh < ), which is either 
originally linear or linearized from nonlinear 
constraints and h  is the h-dimensional constant 
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vector. Hence, the equations (2.1), (2.2) and (3.1) 
together represent the system model, the 
measurement model, and the constraints among the 
states in discrete Kalman filtering.   

In analogy to the alternate formulation 
summarized in Section 2.3, the Principle of Least 
Squares is straightforwardly applied epochwise 
hereinafter to result the solution for discrete Kalman 
filter with constraints. To demonstrate the flexibility 
in dealing with the available functional and 
stochastic models, three different ways that deliver 
an identical estimate of the state vector )(kx  are 
introduced in Sections 3.2, 3.3 and 3.4, respectively, 
of which Section 3.4 is the focus of attention of this 
manuscript. 

3.2 Approach One 

The measurement equation system is here 
structured as follows  
1) a pseudo-measurement vector )(kxl′ is given 

directly by using the solution of the state vector 
from the standard Kalman filter (without any 
constraints) as in Section 2, which establishes the 
following residual equation: 

)()()( kkk xhx lxv ′−=                                      (3.2) 

wherein )(khx  is the state estimate subject to 
the constraints as in (3.1) while the pseudo-
measurement vector and its variance matrix are:   

)/()( kkkx xl =′     (refer to (2.3))                  (3.3)   

)()( kk
xx xxll DD =′′  (refer to (2.4))         (3.4) 

2) a group of h linear constraints as in (3.1) are 
applied. 
The equations (3.2) and (3.1) together compose 

the model in the form of indirect observations with 
constraints. So, the Principle of Least Squares is 
applied to the following cost function at epoch k: 

])()([2)()()(     

))(),(/)((:
1 hxHkvDv

zlxmin

llll −+

=′

′
−
′′′ kkkkk

kkkg

h
TT

h
T

xh

xxxx

(3.5) 

which was called the Mean Square Method in 
[Simon and Chia, 2000]. To seek for the (minimum) 
extreme value of (3.5), its first order derivative with 
respect to )(khx  is assigned to 0: 

))(),(/)((
)(

kkkg
k xh

h

zlx
x

′
∂
∂

oHkDvl =+= −
′ )(2)/()(2       1 kkkk TT

hxx
T
x

          (3.6) 

which yields  

olDkHxD =′−+ −− )()()()()()( 11 kkkkkk xxxhhxx     (3.7) 

The equations (3.7) and (3.1) together compose a 
normal equation system: 







 ′=













 −−

h
lD

k
x

OH
HD )()/()(

)(
)()/( 11 kkkk

k
kkk xxx

h

h
T

xx  

                                                                            (3.8) 
which possesses two unknown parameter vectors: 
the state vector )(khx  and the Lagrange multiplier 

vector )(khk  brought by the constraints. 

To solve (3.8), one can first derive )(khx  from the 
first equation:  

)()()/()/(          
)]()()()/()[()( 1

kkkkkk
kkkkkkk

hxx

hxxxxxh

kHDx
kHlDDx

−=
−′= −

   (3.9) 

wherein )/( kkx   is the minimum variance estimate 
of the state vector given in (2.3). Substituting (3.9) 
into the second equation of (3.8) delivers the 
Lagrange multiplier vector )(khk : 

])/()()[()( 1 hxHNk −= − kkkkk T
hhh                  (3.10) 

where a helping matrix )(khhN  is defined to 
simplify the notation  

)()/()()( kkkkk xx
T

hh HDHN =                      (3.11) 

The substitution of (3.10) into  (3.9) gives )(khx  

})/()(){()()/(

)/()(ˆ
1 hxHNHD

xx
−−

=
− kkkkkkk

kkk
T

hhxx

h  (3.12) 

in which the overhead symbol ^ is commonly 
ignored wherever no confusion may occur.   

The associated variance matrix with )(khx  is 
derived based on (3.12): 

)/()()()()/(   

)/()(
1 kkkkkkk

kkk

xx
T

hhxx

xxhh

DHNHD

DD xx

−−

=
    (3.13) 

wherein )/( kkxxD  is the variance matrix of 
)/( kkx  in (2.4). 

This solution is indeed identical with the one 
after Maximum Probability Method and Projection 
Method presented in Simon and Chia [2000].  

3.3 Approach Two  

Differently from Approach One in Section 3.2, 
the measurement equation system is here structured 
as follows  
1) A pseudo-measurement vector )(kxl ′′ is defined 

by the predicted state vector )1/( −kkx  from 

1−kt  to kt  (i.e., time update) from the standard 
Kalman filter as in Section 2, which establishes 
the following residual equation: 

)()()( kkk xhx
lxvl ′′−=′′         (3.14) 

with 
)1()()1/()( −=−=′′ kkkkkx xAxl              (3.15) 
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)()()()()1()( 

)1/()(

kkkkkk

kkk
TT

xx

BQBADA

DD

xx

xxll

+−=

−=′′′′ (3.16) 

2) A measurement vector )(kzl is adapted from the 

real measurement vector )(kz  at kt  as in (2.2), 
which yields the following residual equation: 

)()()()()( kkkkk hzl zlxCvv
z

−==             (3.17) 

with 
)()( kkz zl =                       (3.18) 

)()( kk RD
zz ll =         (3.19) 

wherein )(kC  is the same as in (2.2).  

3) a group of h linear constraints as in (3.1) are 
applied, wherein h (bold and italic) is the 
constant vector in the constraints.  
Now, the equations (3.14), (3.17) and (3.1) 

together compose another model in the form of 
indirect observations with constraints at epoch k. 
Accordingly, the cost function for applying the 
Principle of Least Squares is as below: 

)()()()()()(   

))(),(/)((:min
11 kkkkkk

kkkg

zzxx

TT
h

llllll

x

vRvvDv
zlx

xx

−
′′

−
′′′′′′ +=

′′
 

)]()()()[(2      kkkk h
TT

h hxHk −+                 (3.20) 

The same as with (3.5), the 1st order derivative of 
(3.20) with respect to )(kx  is assigned to 0: 

oHkCRv

Dvzlx
x

l

lll

=++

=′′
∂
∂

−

−
′′′′′′

)(2)()()(2   

)()(2))(),(/)((
)(

1

1

kkkk

kkkkkg
k

TT
h

T

T
xh

h

z

xxx  (3.21) 

which gives 

ozRClD

kHxCRCD

xll

ll

xx

xx

=−−

++
−−

−−

)()()()()(

)()()}()()()({
11

11

kkkkk

kkkkkk
T

hh
T

 (3.22) 

From (3.22) and (3.1), the normal equation 
system goes as follows: 








 +′′
=















 +

−−
′′′′

−−
′′′′

h
zRClD

k
x

OH
HCRCD

xll

ll

xx

xx

)()()()()(

)(
)(

)()()()()(

11

11

kkkkk

k
k

kkkkk

T

h

h
T

T

(3.23) 

which is identical to (3.8) because it can be 
proved 
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This implies that (3.8) and (3.23) result in the 
identical solution for the state vector. 

3.4 Approach Three 

Furthermore, differently from Approaches One 
and Two, Approach Three here develops the 
proposed framework for comprehensive error 
analysis in discrete Kalman filtering with constraints, 
which is particularly an extension of (2.14) – (2.16) 
by adding the constraints among the states. The 
measurement equation system is hereto structured as 
follows: 
1) The first pseudo-measurement vector )(kxl  is 

here defined by the predicted state vector 
exclusive of the effect of the process noise vector. 
Its residual equation is (refer to (2.14): 

)()()()()( kkkkk hhx xl lwBxv −−=           (3.25) 

)1()()( −= kkk xAlx                                   (3.26) 

)()1()()( kkkk TADAD xxll xx
−=                 (3.27) 

2) The second pseudo-measurement vector )(kwl is 
defined by the process noise vector, which gives 
the residual equation below (refer to (2.15):  

)()()( kkk whw
lwvl −=           (3.28) 

)()( 0 kkw wl =   (usually ow =)(0 k )         (3.29) 

)()( kk
wwll QD =            (3.30) 

3) A measurement vector )(kzl  is adapted from the 

real measurement vector )(kz  at kt  as in (2.2). 
So, the residual equation is as (3.17) alongside 
with (3.18) and (3.19).   

4) a group of h linear or linearized constraints are 
as in (3.1).  
Essentially, one must give one’s attention to 

(3.26), )1/()( −≠ kkk xlx  because 
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Writing four equations (3.25), (3.28), (3.17), and 
(3.1) together gives the entire residual equation 
system with constraints as below: 
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(3.32) 

alongside with the blockwise covariance matrix of 
three independent measurement vectors )(kxl , 

)(kwl  and )(kz  as in (3.27), (3.30), (3.19). The 
main difference of (3.32) from Approach One in 
Section 3.2 and Approach Two in Section 3.3 lies in 
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directly modeling three originally independent 
random vectors as the measurement vectors. 
Accordingly, the unknown parameters have been 
extended from )(khx  to both of )(khx  and )(khw , 
This modeling strategy allows estimating the process 
noise vector epochwise and also the residual vector 
of )(kwl , which has been of scarcely any mention in 
literature, except initially modeled in Wang [1997].  

Frankly, (3.32) allows specifying the following 
cost function for applying the Principle of Least 
Squares: 
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which yields two 1st order partial derivatives for 
)(khx  and )(khw , respectively: 
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Together with (3.1), (3.34) and (3.35) build up 
the corresponding normal equation system: 
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Although deducing an explicit solution of (3.36) 
affirmatively seems complicated because the 
coefficient matrix of (3.36) is in the form of a 3×3 
partitioned block matrix, we have successfully 
accomplished the algorithmic formulation of the 
solution for )(khx , )(khw  and )(khk  inclusive of 
some further relevant contents, e.g., the residual 
vectors and redundancy contribution and redundant 
indexes of the measurements etc.   

Before the solution is delivered, the equivalency 
of (3.36) to (3.8) and (3.23) is first proved. With the 
2nd equation in (3.36), three specifics need readers’ 
attention for the benefit of further derivation:  
i) The coefficient matrix of )(khx  in the 1st 

equation of (3.26) is )/(1 kkxx
−D  (refer to (3.24)). 

ii) The inverse of the coefficient matrix of 
)(khw  in the 2nd equation of (3.26) gives 
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iii)  Solving for )(khw  from the 2nd equation in (3.26) 
gives 

)()()(              

)]()()1/()()()([)(
1

1

kkk
kkkkkkkk

h
T

xx
T

h

xDB
QBDBQQw

xxll
−

−

⋅

⋅−−=

  
)]()()()()([   

)]()()1/()()()([
11

1

kkkkk
kkkkkkk

w
T

xx
T

lQlDB
QBDBQQ

xll xx

−−

−

+−⋅

⋅−−+ (3.38) 

Substituting (3.38) into the 1st equation of (3.36) 
eliminates )(khw  
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which proved that (3.36) is equivalent to (3.8) and 
(3.23) for )(khx  and )(khk  as  
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3.5 Solution  

Now, without providing the lengthy intermediate 
steps, the solution of )(khx , )(khw  and )(khk  is 
directly given below: 
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with the variance–covariance matrices of )(khx  and 

)(khw : 
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3.6 Solutions with and without Constraints 

The solution of )(khx  and )(khw  in discrete 
Kalman filtering with constraints is connected to the 
solution of )(kx  and )(kw  (without constraints) 
given in Section 2.3 as follows:   
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This group of formulas provides the opportunity 
to obtain the solution with constraints directly upon 
the solution from the standard Kalman filtering 
described in Section 2. A hard-won advantage of the 
solution expressions from (3.47) to (3.51) lies in first 
obtaining the solution after  (2.3) (or (2.18)), (2.19), 
(2.4), (2.20) and (2.21) without considering the 
constraints and then utilizing )/( kkx  to linearize 
the constraints, when they are nonlinear, and apply 
them towards the solution with constraints.     

3.7 Residual Vectors and their Variance 
Matrices 

For error analysis in Kalman filtering, )(k
hxv , 

)(k
hwv  (when ow =)(0 k ) and )(k

hzv  with their 
associated covariance matrices are further derived 
below. 

In general, they can directly be calculated 
according to (3.32) or individually after (3.25), (3.28) 
and (3.17). However, they are further detailed. 

First, with the residual vector )(kh
xv  of )(kxl  in 

(3.25), substituting (3.41) and (3.42) or (3.47) and 
(3.48) into (3.25) gives   
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Based on (2.22), (3.52) is further simplified to 
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Second, with the residual vector )(k
hwv  of )(kwl  

in (3.28), the substitution of (3.42) or (3.48) yields 
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After (2.23), (3.54) is further reformed to 
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Because the initial value of )(kwl  is usually 

assumed to be: ow =)(0 k  in practice, (3.54) 
becomes 
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Third, with the residual vector )(kh
zv  of =)(kzl

)(kz , substituting (3.41) or (3.47) into (3.17) 
delivers: 
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According to (2.24), (3.58) is simplified to  

])/()()[()(              

)/()()()(
1 hxHNH

DCvv
−⋅

−=
− kkkkk

kkkkk
T

hh

xxz
h
z       (3.59) 

The covariance matrix of the residual vectors 
for each of )(k

hxv , )(k
hwv  and )(k

hzv  are derived as 
follows: 
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(1) )(kh
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h
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vvD  is derived by applying the law of 

variance propagation to (3.52a)   
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as ODx =)(kd  in (2.10). Under the consideration of 
(2.25), (3.60) becomes 
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and further, based on (2.26), 
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variance propagation to (3.58)   
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and further according to (2.24), 
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3.8 Redundancy Contribution of Measurements 

There are two levels of redundancy contribution: 
the total redundancy contribution of )(kxl , )(kwl  
and )(kz  together as well as the subtotal redundancy 
contribution of each of the groups, and the 
individual redundant indexes associated with each 
element in a group of the independent measurements, 
here specifically )(kwl  and )(kz  because )(kQ  and 

)(kR  are commonly diagonal in practice. The 
following discusses the redundancy contributions of 

)(kxl , )(kwl  and )(kzl  one by one:  
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However, no individual redundant indexes will 
have the usual meaning for )(kxl  as its variance 
matrix of =)(k

xx llD

)1,()1()1,( −−− kkkkk TADA xx will not be 
possibly diagonal in reality. 
(2) The redundancy contribution )(kr
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Besides, the individual redundant index 
associated with each component in )(kwl , when 

)(kQ is diagonal, is derived as follows 
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(3) The redundancy contribution  )(kr
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in which the first item is 
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When )(kR  is diagonal, the individual redundant 
index with each component in )(kzl  is 
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and further 



65 
 

)()()/()([)]()([)( 1 kkkkkkkkr hhxxii
i
z

−+−= NHDCKCI
            ii

T
xx

T kkkkk )]()()/()( 1−⋅ RCDH  
     )1,2,...,( pi =                                       (3.73) 

Finally, the total redundancy contribution of the 
three independent observation vectors together at 
epoch k, i.e., total redundancy number of )(kxl , 

)(kwl  and )(kzl  together is equal to 
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with the following specific detail, 
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It can be proved that the total redundant index at 
epoch k is equal to 
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which means 
)()()()()()( khkpkrkrkrkr zll wx
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with )(kp  and )(kh  being the number of the 
measurements in )(kz  and the number of the 
constraints in (3.1). 

3.9 Other Aspects 

In addition, several algorithmic developments 
such as test statistics, variance factors and variance 
component estimation etc. may be further conducted, 
in analogy to the work in [Wang, 1997, 2008, 2009 
etc.] and are excluded here due to the space 
restriction, except the following essential remark 
about the variance of unit weight: 

(i) The variance of unit weight for Section 2 
(standard discrete Kalman filter): the one in (2.34) 
is identical to the one in (2.35). 

(ii) The variance of unit weight for Section 3 
(discrete Kalman filter with constraints): 
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4. Algorithm in the Form of Extended Kalman 
Filter with Constraints 

This section frames the relevant formulas in the 
form of Extended Kalman filter in accordance with 
the functional model defined in Section 3.1, but 
having them (i.e., (2.1), (2.2) and (3.1)) nonlinear. 

The system model, the measurement model and 
constraint model appear nonlinear as follows: 

)1()1,()),1(()( −−+−= kkkkkk wBxAx        (4.1) 

)()),(()( kkkk ∆+= xCz                         (4.2) 

ohxH =−)),(( kk                            (4.3) 

As for the variance propagation, three Jacobian 
matrices are derived here, 
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which is with respect to the estimated state vector )1/1( −− kkx  at 1−kt ,
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which is with respect to the predicted state vector )1/( −kkx  through the time update from 1−kt  to kt , and 
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which is with respect to the estimated state vector )(kx  through the measurement update before the constraints 

are applied at kt . 

The following gives the algorithm in the form of 
Extended Kalman filter by referring to Sections 3.4 
and 3.5: 

1) THE MEASUREMENT MODEL 

The predicted state vector exclusive of the effect 
from the process noise vector: 

)()1()1,()()( kkkkkk hhx xlwBxv −−−−=      (3.25) 

)1,),1(()( −−= kkkk hxAlx  (vs. (3.26))      (4.7) 

)1,()1()1,()( −−−= kkkkkk TADAD xxll xx
     (3.27) 

The process noise vector as a group of the pseudo-
measurements: the same as (3.28), (3.29) and (3.30). 
A group of the measurements from the 
measurement vector )(kz at kt :  
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)()( kkz zl =                         (3.18) 
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A group of the constraints on the states: 

ohxH =−)),(( kkh  (vs. (3.1))                    (4.9) 

2) THE SOLUTION 

The state vector, the process noise vector and the 
Lagrange multiplier vector: 
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])),/(()[()( 1 hxHNk −= − kkkkk hhh                  (4.12) 

wherein 

)()()1/()/( kkkkkk dKxx +−=                 (4.13) 

)()()1,),1(()1/( 0 kkkkkkk h wBxAx +−−=− (4.14) 

)()()1,),1(()()( 0 kkkkkkk h wBxAzd −−−−= (4.15) 

The var-covariance matrices of the state vector and 
the process noise vector: the same as (3.49), (3.50) 
and (3.51). 

3) THE MEASUREMENT RESIDUALS 

The residual vectors: 

])),/(()[()(               

)]()()[(            

)()()1/()()(

1

1

hxHNH

CKID

dKDDvl

−⋅

−−

−=

−

−

kkkkk

kkk

kkkkkk

hh

T
ll

xxll
h

xx

xxx

      (4.16) 

])),/(()[()(                
)]()()[()(             

)()()1/()()()(

1

1

hxHNH
CKIBQ

dKDBQvl

−⋅

−−

−=

−

−

kkkkk
kkkk

kkkkkkk

hh

TT

xx
Th

w

     (4.17) 

])),/(()[()(            

)/()()(])()([)(
1 hxHNH

DCdIKCv
−⋅

−−=
− kkkkk

kkkkkkk

hh

xx
h
z  (4.18) 

The variance matrices of the residual vectors: are 
the same as (3.60) – (3.65). 

4) THE REDUNDANCY CONTRIBUTION: 

The same as in Section 3.8. 

For the convenience of practical implementation and 
better understanding of the proposed framework, an 
algorithmic flow is suggested in Fig. 4.1. 

5. CONCLUDING REMARKS  

This manuscript exhibited flexible algorithmic 
formulation for Kalman filtering with equality 
constraints on the system states, and practically 
developed an analytic framework for comprehensive 
error analysis accordingly. Specifically, this 
manuscript has: 

(a) Developed a unique formula set as an innovative 
framework on the base of the three independent 
error sources that influence the system state 
estimate (Section 3.1-3.6); 
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Fig. 4.1 an algorithmic flow of EKF with Constraints 

(b) Specifically introduced the equation for the 
residual vector of the process noise vector , as 
well as their covariance matrices (Section 3.6); 

(c) Made the reliability analysis feasible through 
parametrically introducing the redundancy 
contribution for the predicted state vector, 
process noise vector, and measurement vector, 
and the individual redundant indexes for the 
elements in the process noise and measurement 
vectors under the assumption of diagonal Q(k) 
and R(k) (Section 3.7); and 

(d) Pointed out its essential potentials how further 
algorithmic extension may be accomplished 
from the proposed formulation (Sections 3.9). 

This work took an important step towards a 
standardized generic approach to performing 
Kalman filtering with equality constraints that 
enables comprehensive and rigorous error analysis, 
which is particularly important for high accuracy 
applications, for instance, the centimeter level 
kinematic positioning and navigation using GNSS 
and/or multisensor-integrated systems in the modern 
direct-georeferencing technology, autonomous 
vehicle driving, and other robotic applications etc., 
wherever it is important to examine the sources of 
any deviations in the estimated system states. The 
issue of comprehensive error analysis in Kalman 
filtering has been addressed previously [Wang, 1997; 
Caspary and Wang, 1998; Wang, et al, 2021; etc.], 
but not yet in the context of a Kalman filter with 
equality constraints. It is the authors’ hope that 
comprehensive error analysis becomes a necessary 
part of the estimation process in the constrained 
Kalman filtering as a result of this work. 
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Appendix: Proof of (3.24) and (3.25) 
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