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Abstract: Integer ambiguity validation is an 
indispensable and critical step in GNSS carrier phase 
positioning for precise and reliable positioning 
applications. The crucial problems associated with any 
ambiguity validation methods are as follows. 1) The 
fixed ambiguity vector can be separated from all other 
ambiguity candidates under certain tests (separability). 
2) The probability of fixing to wrong ambiguity 
combinations (mis-fixing) can be controlled to an 
acceptable level based on different application 
requirements. Traditional ambiguity validation methods, 
such as the R-ratio and the difference tests which use 
one statistical test to control both separability and mis-
fixing rate, are widely used due to easier computation. 
The performances of these methods are generally 
acceptable. However, experiments show that these tests 
with a fixed threshold can cause either a small 
percentage of mis-fixing or overly conservative with 
long observation time. In this paper, we propose a new 
Geometry Based Ambiguity Validation (GBAV) 
method which uses two statistical tests to control 
geometry separability and mis-fixing probability 
separately. The thresholds for both tests can be strictly 
determined based on user requirements to control the 
quality of ambiguity resolution. Three 24-hour GNSS 
(GPS, BDS) datasets (two short baselines and one 
middle-range baseline) are processed using the 
proposed GBAV method, and compared with the 
popular R-ratio method. The results show that by 
giving proper control on the mis-fixing probability 
(<0.01%), there is no mis-fixing case in all three 
datasets.   
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1. Introduction 

The Global Navigation Satellite Systems (GNSS) 
are satellite navigation systems which provide space-
based positioning, navigation and timing (PNT) 
services in all weather conditions, anywhere on or near 
the Earth (Leick 2004). GNSS provides two common 
types of measurements for positioning, namely pseudo-
range and carrier phase. These measurements enable 
the determination of the ranges between the receiver 
antenna and the satellites. The carrier phase based 
positioning results in more precise range than those 
from pseudo-range, if the carrier phase ambiguity can 
be reliably resolved (Han and Rizos 1999). However, 
an incorrect integer ambiguity solution may cause 
severe biases in the position solution and in any other 
of the real-valued parameters and it is important to 
assess the probability of correct ambiguity estimation 
(Verhagen and Teunissen 2013). Thus, integer 
ambiguity validation is an indispensable and critical 
step in GNSS ambiguity resolution process. Over the 
past years, various ambiguity validation methods have 
been proposed, such as F-ratio test (Frei and Beutler 
1990; Euler and Landau 1992), R-ratio test (Euler and 
Schaffrin 1991; Leick 2004; Teunissen and Verhagen 
2009), difference test (Tiberius and De Jonge 1995), 
projector test (Wang et al. 1998; Han 1997). These 
methods are easy to compute and the performances are 
generally acceptable, if correct critical values are 
selected. However, there are some disadvantages for 
this type of ambiguity validation methods. Taking the 
most popular ratio test as an example, the critical 
values are normally selected empirically, as the statistic 
distributions for the tests are difficult to be established. 
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Therefore it is difficult to evaluate or to compare the 
performances of these empirical tests (Li and Wang 
2012). In addition, the experiments results from 
(Teunissen and Verhagen 2009; Teunissen and 
Verhagen 2004; Teunissen 2013;Verhagen and 
Teunissen 2013) indicated that the traditional use of the 
ratio test with a fixed threshold often results in either 
unacceptably high failure rates or overly conservative. 
For the strong models, the fixed value ratio tests are 
often too conservative, so that the false alarm rates are 
unnecessarily high, while the failure rates are very 
close to zero. For weak models, on the other hand, the 
currently used fixed values are often too low, so that 
the fixed solution is often wrongly accepted, resulting 
in high failure rates. To overcome these problems, 
Verhagen and Teunissen (2006) proposed a model-
driven ratio test with a fixed failure rate. Simulation 
results have shown that it is possible to describe the 
threshold values based only on the number of 
ambiguities and the failure rate. Besides the ambiguity 
validation test mentioned above, Ellipsoidal Integer 
Aperture (EIA) (Teunissen 2003), and Penalized 
Integer Aperture (PIA) (Teunissen 2004) based 
validation methods are dependent on lower bound 
(Teunissen 1998a) or upper bound (Teunissen 2000) of 
ambiguity resolution success rates. The advantage of 
these approaches is that critical values of the statistical 
tests are linked with user controlled fail rates. However, 
the critical values rely on satellite geometry and it is 
difficult to describe them mathematically, particularly 
for multiple epoch observations. Also, the sample size 
is important for these approaches, resulting that longer 
observation time is preferred for reliable solution (Li 
and Wang 2012). To reduce the time required for 
observation and to improve the reliability, Ji et al. 
(2010) proposed to combine R-ratio and EIA tests 
together for ambiguity validation. Through allowing 
slight overlap of pull-in region, the observation time for 
EIA could be significantly reduced. The R-ratio test 
was applied at the same time to discriminate the cases 
in the overlapping regions. Test results showed the 
combined validation method improved the ambiguity 
resolution reliability, and had similar efficiency to the 
R-ratio at the same time. A comprehensive review and 
evaluation of these tests can be found in Verhagen 
( 2004; 2005), Verhagen and Teunissen ( 2006), and Li 
and Wang (2012).  

Geometrically, ambiguity resolution tries to find an 
intersection point of all ambiguities with minimum 
residuals, compared with all the other ambiguity 
combinations in ambiguity space. If there are no errors 
in GNSS measurements, the ambiguities can be fixed to 
integers when there is only one intersection point. For a 
given GNSS datasets, if there were two intersection 
points, no validation method can distinguish them. On 

the other hand, the measurement errors may shift the 
correct intersection point significantly. It will cause the 
ambiguity resolution algorithms fixing to wrong 
ambiguity. As mentioned above, ratio tests were 
applied popularly and empirically. They use one 
statistical test to control both problems. As a result, 
these tests with a fixed threshold may cause some 
ambiguity mis-fixing casesor overly conservative with 
long observation time. In this paper, we proposed a 
new Geometry Based Ambiguity Validation (GBAV) 
method to separate the validation test into statistical 
tests, including the spatial separability and mis-fixing 
rate. Based on the statistical distributions of the two 
tests, we are able to determine the thresholds based on 
user requirements to control the spatial separability and 
mis-fixing rate separately. With this new method, we 
can efficiently control the mis-fixing probability to 
ensure the quality of ambiguity resolution.  

In section 2, the concept spatial separability and 
mis-fixing condition are introduced and their associated 
probabilities are given. The proposed Geometry Based 
Ambiguity Validation (GBAV) method is summarized 
in section 3. Numerical tests and results with three 
GNSS 24-hour datasets are given in section 4. The 
discussions and conclusions are given in section 5. 

2. Spatial Separability and Mis-fixing Condition 
for Ambiguity Validation 

The general form of linear observation equation on 
GNSS carrier phase observation can be expressed as 
(Parkinson et al. 1996; Leick 2004; Hofmann-
Wellenhof et al. 1993): 
𝐴𝑋 + 𝐵𝑁 + ε = 𝐿                                                       (1) 
where 𝐿  denotes the double difference observation 
vector, 𝑁  is double difference carrier phase integer 
ambiguity vector (𝑁 ∈ 𝑍𝑛), 𝑋 is the vector of the other 
unknown parameters (including position coordinates), ε 
is the random errors, and the matrices 𝐴 and 𝐵 are the 
corresponding design matrices. 

The solution of Eq. (1) can be obtained by 
minimizing Eq. (2) (Verhagen 2004): 

min ||𝐿 − 𝐵𝑁 − 𝐴𝑋||𝑄𝐿
2 ,    𝑁 ∈ 𝑍𝑛,𝑋 ∈ 𝑅𝑛               (2) 

where ||∗||𝑄𝐿
2 = (∗)𝑇𝑄𝐿−1(∗), and 𝑄𝐿  is the variance-

covariance matrix of observation vector 𝐿. 
In general, the ambiguity fix solution can be divided 

into three steps (Teunissen 1995). In the first step, the 
integer constraints on the ambiguities are simply 
ignored. The unconstrained least-squares solution is 
referred to as the float solution of 𝑁� , 𝑋� . The 
corresponding variance-covariance (VC) matrix is as 
following, 
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�𝑁�
𝑋�
� ,    �

𝑄𝑁� 𝑄𝑁�𝑋�
𝑄𝑋�𝑁� 𝑄𝑋�

�                                                    (3) 

In the second step, the integer ambiguity estimation 
N�  is computed from the ‘float’ ambiguity, subject to 
min |�𝑁� − N��|𝑄𝑁�

2 . Integer rounding, integer 
bootstrapping and integer least-squares are different 
methods for obtaining the integer solution. Integer 
least-square (ILS) is optimal, as it maximizes the 
probability of correct integer estimation (Teunissen 
1999). In contrast to rounding and bootstrapping, an 
integer search is needed to compute the ILS solution. 
This can be efficiently done with the LAMBDA 
method (Teunissen 1995b). Finally, fixed solution is 
obtained by: 

𝑋� = 𝑋� − 𝑄𝑋�𝑁�𝑄𝑁�
−1(𝑁� − N� )                                       (4) 

For relative positioning, if the double difference 
ambiguity vector is truly known as 𝑁0 , the double 
difference carrier phase observation equation can be 
written as,  
𝐴𝑋0 = 𝐿0 + 𝜆𝑁0 + 𝑒 with a weight matrix 𝑃             (5) 
where 𝐴 is the design matrix, 𝑋0 is the receiver position 
vector,  𝐿0  is the double difference carrier phase 
measurement vector without noise, 𝜆 is the wavelength 
of carrier phase, and 𝑒 is the true error vector of carrier 
phase measurement. The other errors, such as 
tropospheric delay and ionospheric delay are not 
considered here as the double difference process 
significantly reduces their effects on short baselines. 
For Long baselines, we can use GNSS measurements to 
estimate tropospheric and ionospheric delays, together 
with receiver position and clock error parameters.  

Assuming 𝑁0  is known, the residual vector 𝑉0  and 
the weighted sum of squared residuals 𝑍0 of Eq. (5) can 
be expressed as Eqs. (6) and (7), when the least squares 
estimation method is used to estimate position vector 
𝑋0. 

𝑉0 = (𝐼 − 𝐻)𝑒                                                     (6) 

𝑍0 = 𝑉0𝑇𝑃𝑉0 = 𝑒𝑇(𝐼 − 𝐻)𝑃(𝐼 − 𝐻)𝑒                 (7) 

where 

 𝐻 = 𝐴(𝐴𝑇𝑃𝐴)−1𝐴𝑇𝑃                                (8) 

The ambiguity validation problem can be generally 
described as follows. 
Give a group of ambiguity candidates 
(𝑁1,𝑁2,𝑁3, … … .𝑁𝑚), and 𝑁0𝜖(𝑁1,𝑁2,𝑁3, … … .𝑁𝑚), 
 ∀𝑁𝑖𝜖(𝑁1,𝑁2,𝑁3, … … .𝑁𝑚), check if 𝑁0 = 𝑁𝑖 for all 
𝑖 = 1, … … ,𝑚. 
If 𝑁𝑖  is a selected candidate,  

𝐴𝑋𝑖 = 𝐿0 + 𝜆𝑁𝑖 + 𝑒= 𝐿0 + 𝜆𝑁0 + 𝜆Δ𝑁𝑖 + 𝑒            (9) 

where 

Δ𝑁𝑖 = 𝑁𝑖 − 𝑁0                                          (10) 

The total error in Eq. (9) is 

Δ = 𝜆Δ𝑁𝑖 + 𝑒                                                       (11) 

The residual vector of Eq. (9) is  

𝑉𝑖 = (𝐼 − 𝐻)Δ = 𝜆(𝐼 − 𝐻)Δ𝑁𝑖 + (𝐼 − 𝐻)𝑒  (12) 

The weighted sum of squared residuals 𝑍𝑖 is 

𝑍𝑖 = 𝑉𝑖𝑇𝑃𝑉𝑖 = 𝜆2Δ𝑁𝑖𝑇(𝐼 − 𝐻)𝑃(𝐼 − 𝐻)Δ𝑁𝑖 +
𝑒𝑇(𝐼 − 𝐻)𝑃(𝐼 − 𝐻)𝑒 + 2𝜆Δ𝑁𝑖𝑇(𝐼 − 𝐻)𝑃(𝐼 − 𝐻)e (13) 

On the other hand, differencing Eq. (5) and Eq. (9), 
we can have:  

𝐴Δ𝑋𝑖 = 𝜆Δ𝑁𝑖                                                        (14) 

where Δ𝑋𝑖 = 𝑋𝑖 − 𝑋0 is the position shift due to the 
wrong ambiguity. 

There is no measurement error in Eq. (14), its 
residual only reflects the coordinate difference caused 
by the Δ𝑁𝑖 . The residual and the weighted sum of 
squared residuals of Eq. (14) are,   

𝑉Δ𝑁𝑖 = 𝜆(𝐼 − 𝐻)Δ𝑁𝑖                                            (15) 

and  

𝑉Δ𝑁𝑖𝑇 𝑃𝑉Δ𝑁𝑖 = 𝜆2Δ𝑁𝑖𝑇(𝐼 − 𝐻)𝑃(𝐼 − 𝐻)Δ𝑁𝑖               (16) 

In another word, the residuals of Eq. (14) only 
reflect whether 𝑁0  and 𝑁𝑖  can be separated 
geometrically or not. For instance, 𝑁0 and 𝑁𝑖 cannot be 
separable if 𝑉Δ𝑁𝑖 = 0. Furthermore, the weighted sum 
of squared residuals (Eq. 16) can also be used to 
describe the degree whether 𝑁0 and 𝑁𝑖 can be separated. 
When 𝑉Δ𝑁𝑖𝑇 𝑃𝑉Δ𝑁𝑖 is too small compared to 𝑉0𝑇𝑃𝑉0 ; 𝑁0 
and 𝑁𝑖 cannot be separated geometrically. Conversely, 
it is possible to separate 𝑁0 from 𝑁𝑖 while 𝑉Δ𝑁𝑖𝑇 𝑃VΔ𝑁𝑖 is 
relatively larger than the sum of the squares of noise 
𝑉0𝑇𝑃𝑉0. 

Inserting Eqs. (6), (7), (15) and (16) into (13), 

𝑍𝑖 = 𝑉𝑖𝑇𝑃𝑉𝑖 = 𝑉Δ𝑁𝑖𝑇 𝑃𝑉Δ𝑁𝑖 + 𝑉0𝑇𝑃𝑉0 + 2𝑉Δ𝑁𝑖𝑇 𝑃𝑉0  (17) 

The weighted sum of squared residuals for Eq. (9) 
consists of three terms. The first term is only 
determined by the difference of selected ambiguity 
vector and the true ambiguity vector. The second term 
is only related to the true error e, and the third term is 
affected by the projection of the true error to the 
direction of residual vector 𝑉ΔN𝑖. 

If the ambiguity candidates (𝑁1,𝑁2,𝑁3, … … .𝑁𝑚) 
of Eq. (9) is arranged based on the size of weighted 
sum of squared residuals (Eq. (13)), from smallest to 
the largest, the ambiguity 𝑁1 is an optimal solution of 
Eq. (9). Thus the ambiguity validation problem can be 
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described as whether 𝑁1 is the true ambiguity vector 𝑁0 
or not, which can be divided into two cases: 1) 𝑁0=𝑁1, 
and 2) 𝑁0=𝑁𝑖  (𝑖 ≠ 1).  

Case 1: 𝑁0=𝑁1, 
Let us consider case 1 first, when 𝑁1  is the true 

ambiguity vector, or, 

𝑁0 = 𝑁1                                                (18) 

and thus,  

𝑉1 = (𝐼 − 𝐻)𝑒                                              (19) 

Select 𝑁𝑖  as a possible candidate ( 𝑖 ≠ 1 ), the 
difference of the sums of residuals between 𝑁1 and 𝑁𝑖 
should be, 

Δ𝑍1𝑖 = 𝑍𝑖 − 𝑍1 = 𝑉Δ𝑁1𝑖𝑇 𝑃𝑉Δ𝑁1𝑖 + 2𝑉Δ𝑁1𝑖𝑇 𝑃(𝐼 − 𝐻)𝑒 =
𝑉Δ𝑁1𝑖𝑇 𝑃𝑉Δ𝑁1𝑖 + 2𝑉Δ𝑁1𝑖𝑇 𝑃𝑉1 > 0                     (20) 

where Δ𝑁1𝑖 = 𝑁𝑖 − 𝑁1 
In Eq. (20), the first term is determined only by the 

geometry of satellites and ambiguity difference Δ𝑁1𝑖 . 
As mentioned above, it can be used to describe whether 
𝑁0 (𝑁1 in this case) and 𝑁𝑖 can be separated compared 
to 𝑉0𝑇𝑃𝑉0 (𝑉1𝑇𝑃𝑉1in this case). Now we can define the 
separability index of 𝑁𝑖 and 𝑁1 as: 

𝑆1𝑖 = 𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖
𝑉1𝑇𝑃𝑉1

                                                  (21) 

When 𝑆1𝑖  is relatively large, 𝑁1  and 𝑁𝑖  are 
geometrically separable compared with a given noise 
level 𝑉1𝑇𝑃𝑉1 . Thus, the geometrical separability 
condition of ambiguity resolution is: 

𝑆1𝑖 = 𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖
𝑉1𝑇𝑃𝑉1

> 𝑘1                                              (22) 

The next question is how to determine k1. Since the 
distribution of the GNSS satellites can be considered as 
random, 𝑉Δ𝑁1𝑖 should obey the normal distribution just 
like the V1 (Teunissen 1998b). Although we are not 
able to prove this hypothesis at moment, simulation 
tests are carried out to test if the distribution of 𝑉Δ𝑁1𝑖 is 
Gaussian. In the simulation, we firstly calculate three 
data sets of 𝑉Δ𝑁1𝑖  and consider them as the samples 
using the observation collected for the experiments (see 
section 4) in this study. The numbers of the samples are 
34648. The probability density of one set of 𝑉Δ𝑁1𝑖  is 
shown in Fig 1 (the blue line). The mathematical 
expectation (µ) and standard deviation (σ) of 𝑉Δ𝑁1𝑖  is 
0.000 and 0.025 respectively. The black line shows the 
normal probability density function with the same µ 
and σ. As shown in Fig 1, these two lines are very 
closer to each other. Furthermore, we apply the Jarque-
Bera test in Matlab, h = jbtest(x), which returns a test 
decision for the null hypothesis that the data in 
vector x comes from a normal distribution. The 
alternative hypothesis is that it does not come from 
such a distribution. The result h is 1 if the test rejects 
the null hypothesis at the 5% significance level, 
and 0 otherwise. Test shows that all the three samples 
come from a normal distribution. As the molecular and 
denominator of Eqs. (21) is independent, 𝑆1𝑖 obeys F-
distribution,  𝑆1𝑖~𝐹(𝑑,𝑑), 𝑑 is the degree of freedom. 
Thus, by giving a significant level, 𝑘1  is uniquely 
determined by the distribution of 𝑆1𝑖~𝐹(𝑑,𝑑).  

 

 
Fig 1  The distribution of  𝑉Δ𝑁1𝑖 (sample one, blue line), The Normal Distribution (black line) 

 The second term in Eq. (20) is determined by the 
size of residual of the true error 𝑒. From Eq. (20), we 
can get 
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2𝑉Δ𝑁1𝑖
𝑇 𝑃(𝐼−𝐻)𝑒

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

= 2𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉0

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

> −1                            (23) 

We define 𝑀𝑖 = 𝑚 ∙ 𝑉𝑖 ,𝑚 = 2𝑉Δ𝑁1𝑖
𝑇 𝑃

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

, and 

𝑀0 = 2𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉0

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

= 2𝑉Δ𝑁1𝑖
𝑇 𝑃(𝐼−𝐻)𝑒

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

.  

In case 1, 𝑉1 = (𝐼 − 𝐻)𝑒, so 

 𝑀1 = 𝑀0 = 2𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉1

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

= 2𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉0

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

> −1           (24) 

If the measurement error vector e obeys a zero mean 
normal distribution, 𝑀0 also obeys normal distribution, 
as it is a linear combination of error vector e. 

Case 2: 𝑁0=𝑁𝑖  (𝑖 ≠ 1). 
Let us consider the second case now, when 𝑁𝑖 

(𝑖 ≠ 1) is the true ambiguity vector (𝑁0 = 𝑁𝑖 ). If 𝑁1 is 
selected as an ambiguity solution in this case (with the 
smallest sum of residuals), an ambiguity mis-fixing 
happens. 

In this case, 

𝑉𝑖 = (𝐼 − 𝐻)𝑒                                                       (25) 

𝑉1 = 𝜆(𝐼 − 𝐻)Δ𝑁𝑖1 + 𝑉𝑖 = −𝑉ΔN1𝑖 + 𝑉𝑖              (26) 

Δ𝑍1𝑖 = 𝑍𝑖 − 𝑍1 = −𝑉Δ𝑁𝑖1𝑇 𝑃𝑉ΔN𝑖1 − 2𝑉Δ𝑁𝑖1𝑇 𝑃(𝐼 −
𝐻)𝑒 = −𝑉Δ𝑁1𝑖𝑇 𝑃𝑉ΔN1𝑖 + 2𝑉Δ𝑁1𝑖𝑇 𝑃(𝐼 − 𝐻)𝑒 > 0 (27) 

where 

 Δ𝑁𝑖1 = 𝑁1 − 𝑁𝑖 = −Δ𝑁1𝑖                             (28) 

Thus in this case, 

𝑀0 = 2𝑉Δ𝑁1𝑖
𝑇 𝑃(𝐼−𝐻)𝑒

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉ΔN1𝑖

> 1                                         (29) 

and,  

𝑀1 =
2𝑉Δ𝑁1𝑖𝑇 𝑃𝑉1
𝑉Δ𝑁1𝑖𝑇 𝑃𝑉Δ𝑁1𝑖

=
2𝑉Δ𝑁1𝑖𝑇 𝑃(−𝑉ΔN1𝑖 + 𝑉𝑖)

𝑉Δ𝑁1𝑖𝑇 𝑃𝑉Δ𝑁1𝑖
 

= −2 + 𝑀0 > −1                                                    (30) 
Comparing Eqs. (24) and (29), the reason for fixing 

to wrong ambiguity is clearly illustrated. When the 
projection of the residual vector of the true error e to 
the direction of  𝑉Δ𝑁1𝑖  is too large which causes 
𝑀0 > 1, a mis-fixing happens.  

Now let us compare Eqs. (24) and (30). 𝑀1 obeys a 
normal distribution for both cases. In case 1 when 
𝑁0 =𝑁1 , 𝑀1  (𝑀1 = 𝑀0 ) obeys a zero mean normal 
distribution (representing a correction ambiguity 
vector). In case 2, 𝑀1 obeys a normal distributions with 
a mean of -2 (representing an incorrect ambiguity 
vector), as shown in Fig. 2. With given 𝑀1 calculated, a 
threshold −1 + 𝑘2  can be set up to decide if 𝑀1 
belongs to case 1 or case 2. When 

𝑀1 > −1 + 𝑘2                                                         (31) 

we consider 𝑀1  belongs to case 1. Otherwise, we 
consider 𝑀1  belongs to case 2. Thus  𝑀1   can be 
considered as an index for ambiguity mis-fixing 
judgement.  

For a given 𝑘2, the success probability 𝑃𝑠, the mis-
fixing probability 𝑃𝑚, and undecided probability 𝑃𝑢 can 
be calculated using Eq. (32), where 𝑃𝑀1  is the 
probability distribution function of 𝑀1. 

�
𝑃𝑠 = ∫ 𝑃𝑀1𝑑𝑥

∞
−1+𝑘2 ,                               𝑀1 =  𝑀0

𝑃𝑚 = ∫ 𝑃𝑀1𝑑𝑥
∞
−1+𝑘2 ,                  𝑀1 = −2 + 𝑀0  

𝑃𝑢 = 1 − 𝑃𝑠 − 𝑃𝑚                                                   
    (32) 

  

 
Fig 2 The distribution of 𝑀1 in case 1 and case 2 
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As shown in Eq. (32), by giving the mis-fixing 
probability 𝑃𝑚, the threshold 𝑘2 is uniquely determined 
with the given variance of  𝑀0. Assuming the true error 
𝑒 obeys a normal distribution, 𝑀0 also obeys a normal 
distribution. The variance of 𝑀0 can be estimated as,  

𝜎𝑀0
2 = �2𝑉Δ𝑁1𝑖

𝑇 𝑃(𝐼−𝐻)
𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉ΔN1𝑖

� (𝑒 ∙ 𝑒𝑇) �2𝑉Δ𝑁1𝑖
𝑇 𝑃(𝐼−𝐻)

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉ΔN1𝑖

�
𝑇

          (33) 

Since 𝑒 ∙ 𝑒𝑇 = 𝜎02𝑃−1 

𝜎𝑀0
2 = 4𝜎02𝑉Δ𝑁1𝑖

𝑇 𝑃(𝐼−𝐻)𝑃−1(𝐼−𝐻)𝑇𝑃𝑉ΔN1𝑖
�𝑉Δ𝑁1𝑖

𝑇 𝑃𝑉ΔN1𝑖�
2 =

4𝜎02𝑉Δ𝑁1𝑖
𝑇 𝑃(𝐼−𝐻)𝑉ΔN1𝑖

�𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉ΔN1𝑖�

2 = 4𝜎02

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉ΔN1𝑖

                              (34) 

Let 𝜎02 ≈
𝑉1𝑇𝑃𝑉1
𝑑

,  where 𝑑 is the degree of freedom of 
Eq. (9). Insert the equation above and Eq. (21) into (34), 

𝜎𝑀0
2 ≈ 4

𝑑•𝑆1𝑖
                                                               (35) 

According to Eq. (35), giving a 𝑆1𝑖, we can obtain the 
variance of  𝑀0  ( 𝜎𝑀0

2 ). With a given mis-fixing 
probability 𝑃𝑚  and 𝜎𝑀0

2  , the threshold 𝑘2  can be 
uniquely determined. 

3. A Geometry Based Ambiguity Validation 
(GBAV) method 

Based on the analysis in section 2, we propose a 
new ambiguity resolution method using both the 
geometrical separability condition (Eq. (22)) and the 
mis-fixing condition (Eq. (31)). Using both conditions, 
it enables to control the degree of spatial separability of 
the ambiguity candidates, and to control the probability 
of mis-fixing rates at the same time. 

The ambiguity validation procedure based on the 
proposed GBAV method can be summarized as: 
1) To avoid the big effect on the ambiguity validation 

of the pseudo-range noise, the GBAV method 
proposed in this paper is only based on the carrier 
phase observation. Theoretically, integer hypotheses 
should be followed from an ILS estimation based on 
Eq. (5). However, this equation is rank deficient 
with one epoch observation and thus long times 
observation will be required to get the float 
solutions and the ambiguity candidates. As a result, 
in this study, we calculate the “float” solution for 
the ambiguity vector with both pseudo-range and 
carrier phase observations, then determine the 
ambiguity candidate search space using the 
LAMBDA method. After the search range of 

ambiguity is determined, only carrier phase 
measurements will be used.  

2) Check the data quality by examining residual 𝑉1 
with various receiver autonomous integrity 
monitoring (RAIM) fault detection and exclusion 
(FDE) methods (Feng et al. 2009) and remove 
measurements if a large error is detected. In this 
way, some outliers can be detected and removed 
from observation. 
Repeat 1) and 2) until no more errors can be found.  

3) Confirm if the ambiguity vector associates with the 
smallest sum of residuals is the correct ambiguity, 
by checking ambiguity vectors with minimum and 
second minimum sum of residuals satisfying the 
separability condition (Eq. (22)), mis-fixing 
condition (Eq. (31)) or not,  

4) If 3) are not satisfied, add one more epoch and then 
repeat 1) and 4). 

5) When both separability condition and mis-fixing 
condition are satisfied, we fix the ambiguity 
𝑁1 = 𝑁0. 

For most conventional ambiguity validation 
methods (i.e. the ratio test), only one threshold is used. 
In GBAV algorithm, we applied two thresholds to 
control spatial separability and mis-fixing probability 
separately. The crucial issues for GBAV is the 
selection of the threshold 𝑘1 and 𝑘2.  

For separability index 𝑆1𝑖, if we set the significant 
level 𝛼 = 0.05, we can estimate the threshold 𝑘1 with 
the degree of freedom d (or the number of observations 
𝑣 ) using a F-distribution. Fig 3 gives the threshold 
values of 𝑘1 with different number of observation from 
5 to 31. From Fig 3 we can see the thresholds decrease 
from 5.05 to 3.79 sharply when the number of 
observation changes from 5 to 7. When the number of 
observation is larger than 24, the value of 𝐹  varied 
slowly, which is always below 2.0. Thus we simply set 
a table for 𝑘1   thresholds with different numbers of 
observations (Table 1). To balance the reliability and 
efficiency, the value of 𝑘1 we selected are all slightly 
higher than that of the corresponding values from the 𝐹 
distribution. 

Table 1 𝑘1 thresholds applied in this paper under 
the significant value of 0.05  

𝒗 5 6 7 8~9 10~13 14~23 >24 

𝒌𝟏 5.5 4.5 4.0 3.5 3.0 2.5 2.0 



34 
 

Figure 3 The thresholds of k1 with different number measurements under the significant value of 0.05  

To determine the thresholds of 𝑘2 , we need to 
estimate the variance of 𝑀0 (Eq. (35)) first. We use 𝑘1 
(low bound of 𝑆1𝑖) to replace 𝑆1𝑖 in Eq. (35) and 𝜎𝑀2  for 
different number of observation are given in Table 2. 
From Table 2, we can find that 𝜎𝑀2  decrease steadily 
from 0.40 to 0.08 when number of observation increase 
from 5 to 31. Using the largest 𝜎𝑀2  which is 0.40 as an 
example, we can determine the threshold 𝑘2  with 
different mis-fixing probability. Table 3 illustrates the 
thresholds of 𝑘2, the probabilities of the success and 
undecided cases when 𝑘2 is equal to 0 or the mis-fixing 
probability is set to be 0.1% and 0.01%. As shown in 
Table 3, the estimation of 𝑘2  increases considerably 
from 0.00 to 0.49 when the mis-fixing rate declines. At 
the same time, the success rate decreases sharply from 
99.38% to 90.00%, which means more time will be 
required to realize the ambiguity resolution when the 
mis-fixing probability reduces. It should be noted that 
the values provided here give the upper limits of mis-
fixing probability. If the same thresholds are used, with 
lower value of 𝜎𝑀2 , the mis-fixing probability will be 
less than that listed in Table 3. 

Since the R-ratio test is very popular and widely 
used, we compare the GBAV method with it. The R-
ratio test is defined as:  

𝑅𝑎𝑡𝑖𝑜 = 𝑉2
𝑇𝑃𝑉2

𝑉1𝑇𝑃𝑉1
> 𝑘                                                   (36) 

Substituting Eqs. (22) and (24) into (36) yields 

𝑅𝑎𝑡𝑖𝑜 = 1 + 𝑆12 + 𝑆12𝑀1                             (37) 

Table 2 𝜎𝑀2  for different numbers of observation 
𝑣 𝜎𝑀2  𝑣 𝜎𝑀2  𝑣 𝜎𝑀2  

5 0.40  14 0.15  23 0.10  
6 0.31  15 0.14  24 0.10  
7 0.26  16 0.13  25 0.09  
8 0.23  17 0.13  26 0.09  
9 0.21  18 0.12  27 0.09  

10 0.19  19 0.12  28 0.09  
11 0.18  20 0.11  29 0.08  
12 0.17  21 0.11  30 0.08  
13 0.16  22 0.10  31 0.08  

It can be seen from Eq. (37) that the ratio test is a 
mixed parameter of spatial separation and mis-fixing 
index. By giving the thresholds of 𝑘1 and 𝑘2, we can 
obtain ratio test threshold k, which is a function of 
number of observation and mis-fixing probability. If we 
select 𝑘1  in Table 1, and 𝑘2 =0.0, 0.24 and 0.49 
respectively, the thresholds for the R-ratio test varies 
from 1.00 to 3.20 for the number of observation from 5 
to 24 (Table 4). 
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Table 3 The threshold of 𝑘2, success and undecided 
probabilities with 𝜎𝑀2 = 0.4 

𝝈𝑴 𝒌𝟐 -1+𝒌𝟐 Success Undecided Mis-fixing 

0.4 0.00 -1.00 99.38%  0.00% 0.62% 
0.4 0.24 -0.76 97.19%  2.71% 0.10% 
0.4 0.49 -0.51 90.00% 9.99% 0.01% 

Table 4 The relationship between the thresholds for 
V-Ratio and GBAV test 

𝒌𝟐 5 6 7 8~9 10~13 14~23 >24 

0.00 1.00  1.00  1.00  1.00  1.00  1.00  1.00 

0.24 2.32 2.08 1.96 1.84 1.72 1.60 1.48 

0.49 3.20  2.80  2.60  2.40  2.20  2.00  1.80 

Even we can use the variable thresholds of the ratio 
test for ambiguity validation, the GBAV method will 
be better that the ratio test. For example, in the case 
when 𝑆1𝑖  is too small but 𝑀1 is sufficiently large, the 
result will pass the ratio test. However, in this case, the 
ambiguity vectors are not spatially separable. Also, 
when is 𝑆1𝑖 is very large, but 𝑀1 is too small, the result 
will also pass the ratio test. But a mis-fixing case would 
be found with the GBAV method.  

4. Numerical Examples  

In this section, to evaluate the performance of the 
GBAV method proposed in this paper, three GNSS 
data sets with 24-hour observations are used for 
ambiguity resolutions.  According to analyze in Ji and 
Xu (Ji et al.), we found that a better ambiguity 
resolution performance will be adopted when the cut 
off angle of BDS GEOs is set to 20°, and the cut off 
angle of IGSOs, MEOs is set to 15°. As a consequence, 
we set the cutoff angle for GEOs to be 20°, and the 
IGSOs, MEOs, as well as the GPS satellites to be 15°. 
In addition, the full ambiguity resolution rather than the 
partial ambiguity resolution is applied. Three ambiguity 
validation methods are used for ambiguity resolution, 
namely constant threshold for the ratio test, variable 
threshold for the ratio test (Eq. (37)), and the GBAV 
method. The quality of an ambiguity validation method 
is described by two factors, i.e. time required for 
ambiguity resolution and ambiguity mix-fixing rate. 
The first factor indicates the efficiency and the second 
factor represents the reliability of the validation method.  

4.1 Data and Data processing methods 

Two short baselines with GPS observation (GODE 
– GODN, 40 m baseline) and (HARB – HRAO, 1.24 
km baseline) from the International GNSS Services 
(IGS) network, and a middle-range baseline (GS01 – 

GS02, 30.6 km in Beijing, China) with GPS/BDS 
observation were used for the evaluation of the GBAV 
method. For all stations, dual frequency geodetic 
receivers were installed at the stations. And the 
observation periods for all baselines are 24 hours. For 
the two short baselines, the update rate is 30s and for 
the middle range baseline the update rate is 1s.  

To evaluate the performance of the proposed 
ambiguity validation method, we started from every 
epoch in the data sets until all ambiguities were fixed to 
their integers. In data processing, the ambiguity-fix rate 
(AFR) (Ji et al. 2010) is used to quantify the efficiency 
performance of ambiguity resolution with the following 
definition, 

𝐴𝐹𝑅 = Number of epoch with ambiguity fixed to integer
Total number of epochs observed in the data sets

  (38) 

Also, all mis-fixing cases were recorded and 
quantified as the percentage of total observed epochs 
during the 24 hour observation period. In the data 
processing, we did not estimate 𝜎𝑀2  every epoch. 
Instead, we used the largest value of 0.4 for all 
processing. To set a baseline for comparison, we used 
the fixed R-ratio of 1, 1.5, 2.0, 2.5, 3.0, and 3.5. Then 
for the GBAV method, the thresholds of 𝑘1, and 𝑘2, 
are adopted from Tables 1 and 3. For the variable R-
ratio test (Eq. (37)), the thresholds are given in Table 4. 
It is worth mentioning that, the observation of both 
GPS and Beidou for all the baselines is double-
frequency signals. So the number of the observation in 
Tables 1 and 4 is generally larger than 8.   

4.2 Test results  

Baseline 1 (GODE – GODN, 40m) 
This is a very short baseline and most of the errors 

can be effectively cancelled by double differencing. 
Table 5 gives the ambiguity resolution results with the 
fixing threshold ratio test. As shown in the table, when 
the ratio is large than 3.0, there is no mis-fixing case, 
and the time required for all epochs ambiguity fixed are 
5-8 epochs or 3-4 min. More than 97% of epochs the 
ambiguities can be fixed within one epoch. On the 
other hand, with the ratio threshold less than 2.5, there 
are some mis-fixing cases.    

The results with variable ratio test and the GBAV 
method are given in Table 6. When 𝑘2 = 0.00 , the 
threshold of R-ratio should be 1.0, and only 1 epoch is 
needed to fix the ambiguities, which is more efficient 
than that of the GBAV test. However, the mis-fixing 
rate (0.14%) is significant higher than that of the 
GBAV method (0.07%). Since there are 2880 epochs, 4 
of them are mis-fixed shown as Table 7. The values of 
S and M at the first epoch when the Ratio suffer from a 
mis-fixing are shown in Table 8. It is shown that the 
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values of S in the first, third and last cases are smaller 
than K1, which means the ambiguity candidates of 
these cases cannot be spatial separated. When the 
GBAV test is involved, 𝑘2 = 0.00, the ambiguities of 
the last two cases in Table 8 are fixed to the right ones. 
When 𝑘2 =0.24, the first two cases in Table 8 also 
achieve the ambiguity resolution correctly, since the M 
controls the mis-fixing probability. On the other hand, 
there are 2 epochs (0.07%) of mis-fixing cases using 
the variable ratio test when 𝑘2 =0.24 and 0.49 
respectively. Take 𝑘2 =0.49 for instance, the time 
required for all epoch’s ambiguity fixed are 5 to 8 
epochs or 2.5 to 4.5 min with the GBAV method. And 
the variable ratio only need 5 epochs. If we just check 
one epoch data, the variable ratio method can fix 99% 
of epochs while the GBAV method can fix around 91% 
when 𝑘2 =0.49. Thus, the ratio methods are more 
efficient than the GBAV method on ambiguity 
resolution.  

Table 5 AFR and Mis-fixing rate of R-ratio test with 
certain values of threshold (GODE – GODN, 
40m) 

Tf Fix R-ratio AFR (%) 
𝑘
= 1 

𝑘
= 1.5 

𝑘
= 2.0 

𝑘
= 2.5 

𝑘
= 3.0 

𝑘
= 3.5 

1 100.00 99.69 99.24 98.72 97.53 96.56 
2  100.00 99.90 99.76 99.41 98.89 
3   99.93 99.90 99.65 99.31 
4   100.00 99.97 99.69 99.44 
5    100.00 99.72 99.48 
>5 & ≤ 8    100.00 100.00 

Mis-fixing rate(%) 
 0.14 0.14 0.07 0.03 0.00 0.00 
Note: Tf stands for Time to fix (epoch) 

Table 6 AFR and mis-fixing rate of GBAV and 
variable R-ratio test with varying threshold 
(GODE – GODN, 40m) 

Tf  
Variable R-ratio AFR 
(%) GBAV AFR (%) 

 
𝑘2
= 0.00 

𝑘2
= 0.24 

𝑘2
= 0.49 

𝑘2
= 0.00 

𝑘2
= 0.24 

𝑘2
= 0.49 

1 100.00 99.51 99.24 99.48 98.23 91.74 

2 
 

99.93 99.86 99.76 99.62 97.67 

3 
 

99.97 99.93 100.00 99.72 98.26 

4 
 

100.00 99.97 
 

99.93 99.10 

5 
  

  100.00 
 

100.00 99.38 

>5 & ≤ 8     100.00 

Mis-fixing rate(%) 
 0.14 0.10 0.07 0.07 0.00 0.00 

Table 7 Mis-fixing cases for ratio test (GODE – 
GODN, 40m) 

GPS Time 𝑘2 = 0.00 
/ 1epoch 

𝑘2
= 0.24 

𝑘2 = 0.49 

h m s K ratio K ratio K ratio 
13 25 30 1.00  1.502 1.72  2.382 2.20  3.780  

13 29 30 1.00  1.533 1.84  2.163 2.40  5.620  

13 55 30 1.00  3.654 1.84  3.654 2.40  3.654  

17 25 00 1.00  2.786 1.84  2.786 2.40  2.786  

 
 
 
 
 

Table 8 Mis-fixing cases for GBAV test (GODE – GODN, 40m) 
GPS Time K1 1 epoch 𝑘2 = 0.00 𝑘2 = 0.24 

h m s Ratio S M S M S M 
13 25 30 3.0 1.502  2.488  -0.798  5.603  -0.863  9.068  -0.119  
13 29 30 3.5 1.533  7.966  -0.933  7.966  -0.933  4.484  -0.616  
13 55 30 3.5 3.654  2.904  -0.086  9.297  0.086  9.297  0.086  
17 25 00 3.5 2.786  2.480  -0.280  7.307  -0.380  7.307  -0.380  

 
Baseline 2 (HARB – HRAO, 1.2 km). 
Again, we applied the fix ratio test first and the 

results are given in Table 9. In this example, for the fix 
ratio method, when the ratio is larger than 3.5, there are 
no mis-fixing cases. The time required for all epochs 
fixed are less than 25 epochs or 12.5 min.  

When we use the GBAV method with 𝑘2 =0.49, 
there are no mis-fixing case and the time required for 
all epochs fixed are less than 15 epochs or 7.5 min 
(Table 10). The variable ratio test can fix ambiguity for 
all epochs during the same period, but there are 3 
epochs of mis-fixing (0.10%). On the other hand, for 
the efficiency of ambiguity fixing, variable ratio test is 
slightly better.  



37 
 

Baseline 3 (GS01 – GS02, 30.6 km). 
As this dataset include both GPS and Chinese 

BeiDou data, we consider two cases here: GPS only 
and GPS/BDS data. When we only use GPS data, the 
results are summarized in Tables 11 and 12. With the 
fix ratio test, the threshold with no mis-fixing cases is 
3.5, and 15 min to resolve ambiguities for all epochs. 
When 𝑘2=0.24 and 0.49, the GBAV method can fix 
ambiguity with no mis-fixing cases. However, the 
variable ratio test suffers from 7.35% and 1.35% mis-
fixing rate when 𝑘2 =0.24 and 0.49. Again, for the 
efficiency of ambiguity fixing, the variable ratio test is 
slightly better.  

 
Table 9 AFR and Mis-fixing rate of R-ratio test with 
certain values of threshold (HARB – HRAO, 1.24Km) 

Tf Fix R-ratio AFR (%) 
𝑘
= 1.0 

𝑘
= 1.5 

𝑘
= 2.0 

𝑘
= 2.5 

𝑘
= 3.0 

𝑘
= 3.5 

≤ 1 100.00 89.97 87.85 81.35 78.09 71.18 
≤2  93.47 93.19 88.68 88.44 82.26 
≤3  95.03 94.65 91.70 91.39 86.73 
≤4  95.66 95.42 93.54 92.78 89.13 
≤10  99.41 99.34 98.85 98.68 97.12 
≤25  100.00 100.00 100.00 100.00 100.00 

Mis-fixing rate(%) 
 8.33 3.47 0.49 0.10 0.03  0.00  

Table 10 AFR and mis-fixing rate of GBAV and R-
ratio test with varying threshold (HARB – 
HRAO, 1.24Km) 

Tf Variable R-ratio 
AFR (%) 

GBAV AFR (%) 

𝑘2
= 0.0  

𝑘2
= 0.24 

𝑘2
= 0.49 

𝑘2
= 0.0  

𝑘2
= 0.24 

𝑘2
= 0.49 

≤1 100.00 89.03 85.97 90.91 80.10 72.36 

≤2  93.51 89.03 99.79 88.23 83.37 

≤3  95.03 89.03 100.00 91.84 86.67 

≤4  95.63 93.58   92.95 88.72 

≤10  99.38 99.06  98.37 95.83 

≤15  100.00 100.00  100.00 100.00 

Mis-fixing rate(%) 
 8.33 0.31 0.10 4.20 0.07 0.00 

 

 

Table 11 AFR and Mis-fixing rate of R-ratio test with 
certain values of threshold (GS01 – GS02, 30.6 km, 
GPS only) 
Tf Fix R-ratio AFR (%) 

𝑘 = 1 𝑘
= 1.5 

𝑘
= 2.0 

𝑘
= 2.5 

𝑘
= 3.0 

𝑘
= 3.5 

0 1 100.00 26.51 7.24 2.28 0.62 0.20 
≤1 60  68.32 32.68 11.62 2.72 0.40 
≤3 180  81.88 65.72 51.34 33.07 23.96 
≤5 300  90.66 77.03 65.65 58.41 45.00 

≤10 600  100.00 100.00 99.36 86.16 71.21 
≤13 780    100.00 99.32 83.26 
≤15 900     100.00 100.00 

Mis-fixing rate(%) 
  49.98 22.38 6.16 0.15 0.05   0.00 

 
Table 12 AFR and mis-fixing rate of GBAV and R-
ratio test with varying threshold (GS01 – GS02, 30.6 
km, GPS only) 
Tf  Variable R-ratio 

AFR (%) 
GBAV AFR (%) 

𝑘2
= 0.00 

𝑘2
= 0.24 

𝑘2
= 0.49 

𝑘2
= 0.00 

𝑘2
= 0.24 

𝑘2
= 0.49 

0 1 100.00 25.83 5.33 15.70 11.37 0.18 

≤1 60  62.76 22.69 72.96 15.43 0.29 

≤3 180  72.65 60.56 92.21 47.63 23.02 

≤5 300  86.30 70.38 96.16 63.21 42.25 

≤10 600  100.00 99.62 100.00 86.33 70.23 
≤ 13 780   100.00  100.00 82.06 
≤ 15 900      100.00 

Mis-fixing rate(%) 
 49.98 7.35 1.56 40.49 0.00 0.00 

For the same baseline, the ambiguity resolution 
performance is much better when using both 
GPS/BeiDou data (Table 13 and 14). With the fix ratio 
test (Table 13), when the threshold is larger than 2.5, 
there are no mis-fixing cases and the time required for 
100% ambiguity fixing is only about 30 epochs or 0.5 
min. When the variable ratio test and the GBAV 
method apply (Table 14), there are no mis-fixing cases 
when 𝑘2 =0.49. The time require for 100% epoch 
ambiguity fixing is only 15s.  
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Table 13 AFR and Mis-fixing rate of R-ratio test with 
certain values of threshold (GS01 – GS02, 
30.6 km, GPS+ BDS) 

Tf  Fix R-ratio AFR (%) 
𝑘
= 1 

𝑘
= 1.5 

𝑘
= 2.0 

𝑘
= 2.5 

𝑘
= 3.0 

𝑘
= 3.5 

0 1 100.00 90.42 90.31 86.55 75.12 57.20 
≤1/30 2  96.08 96.08 92.65 81.71 63.71 
≤1/12 5  99.35 99.35 96.52 87.15 70.99 
≤1/6 10  100.00 100.00 98.26 90.20 76.14 
≤1/4 15    99.18 92.11 79.20 
≤1/2 30    100.00 94.99 84.29 
≤4 240     100.00 100.00 

Mis-fixing rate(%) 

 8.63 0.12 0.05 0.00 0.00 0.00 

 
Table 14 AFR and mis-fixing rate of GBAV and R-

ratio test with varying threshold (GS01 – 
GS02, 30.6 km, GPS+ BDS) 

Tf Variable R-ratio 
AFR (%) 

GBAV AFR (%) 

𝑘2
= 0.00 

𝑘2
= 0.24 

𝑘2
= 0.49 

𝑘2
= 0.0  

𝑘2
= 0.24 

𝑘2
= 0.49 

0 1 100.00 90.53 87.72 72.08 85.38 60.26 
≤ 1/30 2  96.08 94.33 90.71 90.46 81.13 

≤ 1/12 5  99.35 97.58 100.00 93.88 89.68 

≤ 1/6 10  100.00 99.69  100.00 92.57 

≤ 1/4 15   100.00   100.00 

 8.63 0.05 0.00 4.31 0.00 0.00 

From the above examples, we can see that when the 
threshold is high enough, the fix ratio test can achieve 
no mis-fixing case for all the test data. However, for 
different datasets, the thresholds vary from 2.5-3.5. If 
we use 3.5 for all the cases, it required almost 8 times 
more observation time for fixing ambiguity for all 
epochs than that with the threshold of 2.5 in the 
GPS/BDS case (Table 13). When the GBAV method is 
used, with 𝑘2=0.49, there is no mis-fixing case for all 
the datasets tested. This demonstrates that the GBAV 
method can effectively control mis-fixing probability. 
With the variable ratio method, the ambiguity fixing 
efficiency is generally better that that of the GBAV 
method, but there are a number of cases of mis-fixing 
on the three baselines with GPS only observation. 

5. Conclusions 

In this paper, we introduced two new concepts for 
ambiguity validation, i.e. spatial separability condition 
𝑆1𝑖  and mis-fixing condition 𝑀1 . By using these two 

concepts, we can understand why ambiguity mis-fixing 
occurs. If the satellite geometry is not strong enough, 
there may be a few ambiguity combinations which are 
not be able to be separated under the existing 
measurement noise level. Moreover, if the projection of 
true measurement error residuals to the direction of 
𝑉Δ𝑁1𝑖  is too large which causes M0>1, an ambiguity 
mis-fixing happens. The conventional ambiguity 
validation methods, such as ratio test and difference 
test, are the combinations of spatial separability 
condition 𝑆1𝑖  and mis-fixing condition 𝑀1 . The 
distributions of 𝑆1𝑖  and 𝑀1  can be strictly defined 
which are the functions of the measurement quality, the 
number of observed satellites, and the satellite 
geometry. This enables us to set up the thresholds 
based on user requirements for the quality control the 
quality of ambiguity resolution.  

Based on these concepts, we proposed a new 
geometry based ambiguity validation (GBAV) method 
which will ensure different ambiguity combinations to 
be both geometrically separable and mis-fixing 
probability controlled. The distributions and threshold 
computation methods for  𝑆1𝑖  and 𝑀1 are given in the 
paper, with given a significant value for  𝑆1𝑖 and a mis-
fixing probability for  𝑀1 .  

The thresholds for the traditional ratio and 
difference tests are normally determined empirically as 
the statistical distributions are difficult to obtain. In this 
paper, we have shown that the traditional ratio and 
difference tests are the mixture of spatial separability 
condition and mis-fixing condition. By applying the 
same concepts, we can calculate the variable thresholds 
for the both methods, with given observation number 
and mis-fixing probability. However, with these single 
threshold methods, it is possible to have some mis-
fixing cases when two ambiguity vectors are not 
geometrically separable, or 𝑀0 is too small.  

To evaluate the performance of the proposed GBAV 
method, three GNSS datasets with 24-hour observation 
are processed, using the fix and variable threshold ratio 
tests as a comparison. It is found that to achieve no 
mis-fixing for all epochs, the thresholds for different 
datasets are different. If the thresholds are increased too 
high, the efficiency of ambiguity resolution can drop 
significantly. Using the concepts proposed by this 
paper, when we select the mis-fixing probability less 
than 0.01% (or 𝑘2=0.49), there is no mis-fixing case 
with the GBAV method for all three datasets. However, 
there are a few cases of mis-fixing for the variable ratio 
test. On the other hand, the ambiguity fixing efficiency 
for the variable ratio test is slightly better than that of 
the GBAV method. 

Also, combining GPS/BDS systems, the ambiguity 
resolution performance can be significantly improved 
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for medium-range baselines. For a 30 km baseline, it 
requires 15 min for all epoch ambiguity fixed with GPS 
data only. With GPS/BDS data, the time for all epoch 
ambiguity fixed can be reduced to 15s.  
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