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An indoor magnetic field matching positioning solution based on 
consumer-grade IMU for smartphone 

 
Jian Kuang1, Taiyu Li1 and Xiaoji Niu()1,2 
1. GNSS Research Center, Wuhan University, Wuhan, China 
2. Artificial Intelligence Institute, Wuhan University, Wuhan, China 
: corresponding author, xjniu@whu.edu.cn  
 
Abstract: Magnetic field matching positioning 
(MFMP) has become one of the mainstream indoor 
positioning methods for mass application. However, 
the problem of the large workload of magnetic field 
mapping and the instability of the magnetometer bias 
remains to be solved. This paper designs an indoor 
MFMP scheme based on consumer-grade Inertial 
Measurement Units (IMUs). In the magnetic field 
mapping stage, the high-precision poses of the 
smartphone obtained by combining a foot-mounted 
IMU, a smartphone built-in IMU, and a few control 
points in the building are employed to generate a 
magnetic field grid map with high efficiency. In the 
real-time positioning stage, the relative trajectory 
generated by pedestrian dead reckoning (PDR) is 
used to improve the position discrimination of the 
magnetic field feature by adding spatial profile; and 
the differential magnetic field strength in the sensor 
frame (instead of in the reference frame) is used to 
achieve matching positioning that is immune to the 
magnetometer bias. The consistency of the magnetic 
field maps built using different smartphones show 
that the proposed magnetic mapping scheme achieves 
an average efficiency of 37 m2/min and is not 
affected by the mapping trajectory and walking speed. 
The real-time positioning results using multiple 
smartphones show that the proposed MFMP 
algorithm is barely affected by the magnetometer bias, 
and can achieve an average RMS value of ±0.83 
meters in a typical office scenario. 

Keywords: Magnetic Matching; Pedestrian Dead 
Reckoning (PDR); Foot-mounted Inertial 
Measurement Unit (IMU); Indoor Positioning; 
Pedestrian Navigation 

1 Introduction 

The indoor geomagnetic field has the ubiquitous 
distortion feature due to the interference of steel 
materials in the building structure, which can be used 
for indoor positioning. Compared with the common 
indoor radio positioning signals (including Wi-Fi [1], 
Bluetooth [2], UWB [3], etc.), indoor magnetic field 
signals have the advantages of ubiquity, stability, and 
immunity from human body influence. Therefore, 
magnetic field matching positioning (MFMP) has 
become one of the mainstream indoor positioning 
methods for mass application [4, 5]. 

MFMP includes magnetic field map generation 
and real-time positioning parts [5, 6]. In the magnetic 
field map generation stage, the correlation between 
magnetic field features and geographic coordinates is 
established. Compared with the methods of 
point-by-point and crowdsourcing, the walking 
survey is the most widely used method for magnetic 
field map data collection by achieving a balance 
between accuracy and cost [6, 7]. The basic idea is 
the surveyors must walk along a straight line between 
two control points at a uniform speed, and the 
coordinates of the control points are determined by 
using professional measurement methods (e.g., total 
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station). However, the requirement of a straight 
trajectory will cause the number of control points to 
increase dramatically in complex indoor areas; at the 
same time, it is difficult for surveyors to ensure 
uniform straight-line walking. In general, the 
traditional walking survey still has the problems of 
heavy workload and unsure accuracy. 

In the real-time positioning stage, the current 
position of the user is determined by calculating the 
similarity between the observed magnetic field 
feature coming from the magnetometer and the 
reference magnetic field feature in the magnetic field 
map. Dynamic time wrap (DTW) [8, 9] and particle 
filter (PF) [10, 11] are the two most frequently used 
methods in the published literature. The DTW 
method has the characteristics of a simple algorithm 
and stable positioning performance by transforming 
the MFMP problem into the similarity calculation of 
two magnetic field feature sequences. However, the 
real user's motion trajectories will be unpredictable in 
an open indoor area, then the DTW method will not 
work properly because there is no reference magnetic 
field feature sequence corresponding to the real-time 
user motion trajectory in the database [8]. The PF 
method sets a large number of particles to retain all 
possible positions of the user, uses the difference 
between the observed and the reference magnetic 
feature to filter out wrong particles, and obtains the 
current position of the user through continuous 
iterative calculation. The PF method has the 
advantages of high positioning accuracy and stable 
performance. However, the computational load of the 
PF method still needs to be further reduced for 
smartphones [11]. 

The positioning performance of the 
above-mentioned magnetic field matching algorithm 
depends on the pre-calibrated magnetometer bias. 
Smartphones are easily affected by nearby magnetic 
materials or strong currents, thereby the 
magnetometer bias needs to be calibrated and 
corrected frequently. Many researchers try to use the 
differential magnetic field feature in navigation 
coordinates (n-frame) to eliminate the effect of 
magnetometer bias [6, 10]. However, the assumption 
that the magnetometer bias is a fixed value in n-frame 

does not hold in the scenario of attitude angle 
fluctuation. In particular, since the user often shakes 
when using a smartphone and the walking route is 
irregular, the differential magnetic field feature in 
n-frame cannot achieve the purpose of eliminating 
the magnetometer bias. 

Aiming at the above-mentioned typical problems 
of MFMP, this paper designs an indoor MFMP 
solution based on consumer-grade inertial 
measurement units (IMUs) as follow.  
a) In the magnetic field map generation stage, a 

foot-mounted IMU, a handhold IMU (i.e., the 
smartphone built-in IMU) and combined with a 
few control points (e.g., as sparse as 50 meters 
between two adjacent control points) are used to 
provide the poses of the smartphone [12]. The 
collection of magnetic field map data can be 
achieved with high efficiency and sufficient 
precision by reducing the number of control 
points and releasing all user motion requirements.  

b) In the real-time positioning stage, the relative 
trajectory generated by pedestrian dead reckoning 
(PDR) is used to improve the position 
discrimination of the magnetic field feature, and 
the differential magnetic field feature in the sensor 
frame is used to achieve the magnetometer bias 
irrelevant matching positioning.  

c) Finally, multiple tests using various models of 
smartphones in real-world scenarios are 
conducted to verify the feasibility and localization 
performance of the proposed scheme. 
The following content of this article is arranged as 

follows: Part 2 provides an overview of the proposed 
MFMP method, Part 3 describes the magnetic field 
map generation method based on the pedestrian 
positioning and orientation system in detail, and Part 
4 describes the magnetic field matching and 
positioning algorithm in detail, Part 5 verifies the 
feasibility and effectiveness of the proposed magnetic 
field positioning scheme in the real environment, and 
Part 6 summarizes and concludes. 
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2  Architecture of the magnetic field 
positioning solution 

The position error of the pure inertial navigation 
system (INS) based on consumer-grade IMUs will 
reach several meters within a few seconds, which is 
far from the needs of practical applications. Then, it 
is necessary to extract the constraint information 
formed by the pedestrian motion law for improving 
the relative positioning ability of the INS. The 
foot-mounted IMU utilizes the fact that the feet of 
pedestrians periodically contact the ground to obtain 
a very powerful relative positioning capability. This 
is the fundamental reason why the combination of 
foot- mounted IMU and hand-held IMU can be used 
to efficiently collect magnetic field vector maps [12]. 
At the same time, the pedestrian walking pattern is 
employed for controlling the velocity error of the 
smartphone built-in IMU-based INS, which provides 
reliable relative position and attitude for improving 
the stability and positioning accuracy of MFMP [13]. 
In general, the consumer-grade IMUs play an 

indispensable role as the auxiliary means for the 
smartphone-based indoor MFMP solution.  

Fig. 1 shows the flow of the MFMP scheme based 
on consumer-grade IMUs. The scheme can be 
divided into two parts:  

1) Magnetic field map generation stage. A 
pedestrian positioning and orientation system (P-POS) 
composed of a foot-mounted IMU, a smartphone 
built-in IMU, and a few control points is used to 
provide high-precision pose. On this basis, a linear 
interpolation method is used to generate a 
high-precision grid map of the magnetic field vector.  

2) Online positioning stage. The relative position 
and attitude coming from the pedestrian dead 
reckoning (PDR) algorithm are used for correlating 
the observed magnetic field strength to form a 
magnetic field profile [12]. Additionally, a 
constructed differential magnetic field profile in the 
sensor frame (b-frame) is used to eliminate the 
influence of the magnetometer bias and provide 
stable positioning results. 

 

INS-based
PDR Attitude

Simalarity 
Calculation

Observed
MFPF(b-frame)

Reference
MFPF(n-frame)

Candidate 
Trajectories

Reference
MFPF(b-frame)

Position

Position

Foot-mounted
IMU Pedestrian 

positioning and 
orientation system

(P-POS)
Smartphone

Magnetometer Magnetic field feature
 (n-frame)

Bilinear 
Interpolation

IMU Attitude

Bias 
Compensation Magnetic field 

feature Map

Position

Smartphone

Magnetometer

IMU

Online Positioning Stage

Magnetic Field Map Generation Stage

 

Fig. 1. The flow of the MFMP scheme based on consumer-grade IMUs. 

3 Magnetic Field Map Generation Stage 

The magnetic field map is the basis of the 
matching positioning scheme. The magnetic field 
map generation method is different depending on the 

different application requirements, which is 
essentially a compromise between measurement 
accuracy and measurement efficiency/cost. This 
paper uses the P-POS-based walking survey method 
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to collect the magnetic field map data with 
high-efficiency. The proposed method reduces the 
number of control points and releases the movement 
demand of the data collectors by utilizing the 
superior relative positioning capability of the 
foot-mounted inertial navigation. After data 
collection, a linear interpolation method is used to 
generate a uniformly distributed grid map of the 
magnetic field vector. 
Pedestrian Positioning and Orientation System 
(P-POS) 

Fig. 2 shows the hardware setup of P-POS, 
including a foot-mounted IMU and a smartphone 
built-in IMU. P-POS can be divided into Foot-INS 
(Foot-mounted IMU-based Inertial Navigation 
System) and Foot-INS/IMU integrated. Foot-INS is a 
typical pedestrian dead reckoning algorithm, and the 
positioning error will continue to accumulate with the 
walking distance, the specific algorithm can be found 
in [14]. Foot-INS assumes that the feet of a 
pedestrian will periodically come into contact with 
the ground, that is, there is a short static state within a 
cycle of the footstep, as shown in Fig. 3. In the 
stationary state, the speed of the foot can be 
considered zero, which can greatly reduce the 
position drift error of the INS. Test results in many 
documents show that the positioning performance of 

Foot-INS based on consumer-grade IMU fluctuates 
greatly, and the typical relative positioning accuracy 
is 0.3~3% of the total walking distance [12, 15]. To 
control the position drift error of Foot-INS, this 
scheme introduces control points (i.e., the coordinates 
are known) to periodically correct the position drift 
error of Foot-INS, and uses a reverse smoothing 
algorithm to further improve the positioning 
accuracy.  

 
Fig. 2. The hardware setup of P-POS, including a 

foot-mounted IMU and a handhold 
smartphone built-in IMU (near the waist).

 

Ground Contact Stationary Ground Off

Start Middle End

Foot-mounted
IMU

Smartphone 
built-in IMU

 
Fig. 3. Foot cycle in normal walking. The relative positional relationship between the foot and the 

waist in the middle of the stationary period in a step cycle that can be regarded as fixed. 

Due to the large difference in magnetic field 
features between the foot and the waist, the trajectory 
coordinates generated by Foot-INS cannot be directly 
used to generate a magnetic field map. To obtain the 
precise pose of the smartphone, the position 
estimated by Foot-INS is used to correct the position 

error of the smartphone built-in IMU. This is the core 
idea of the Foot-INS/IMU combination, which is 
similar to the GNSS/INS integrated positioning. 
However, the relative positional relationship between 
the foot and the waist is constantly changing (as 
shown in Fig. 3), and the position of the foot cannot 
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be considered equal to the position of the waist. After 
a thorough analysis of pedestrian walking, we found 
that the relative positional relationship between the 
foot and the waist in the middle of the stationary 
period in a single step cycle can be regarded as fixed. 
Then, the estimated position of Foot-INS can be 
accurately projected to the waist. [12] gives a detailed 
algorithm description, and its results show that the 
estimation accuracy of the position and attitude of the 
smartphone under the condition that the distance 
between adjacent control points is 50 meters can 
reach the decimeter level and the degree level, 
respectively.  
Magnetic Field Grid Map Generation 

As data collectors cannot guarantee uniform and 
high-density collection of magnetic field features, 
this paper uses the bilinear interpolation method to 
generate a magnetic field grid map. Many research 
works have shown that rigorous theoretical 
interpolation methods can achieve higher accuracy 
than bilinear interpolation[16]. However, the 
accuracy improvement of magnetic field maps is very 
limited for pedestrian localization scenarios. The 
magnetic field map generation includes two steps: 
rasterization and linear interpolation. 

Rasterization: 1) Divide the test area into a 
uniform grid in the east-west direction and 
north-south direction. 2) Mark the grid where each 
magnetic field feature is located according to the 
estimated smartphone coordinates. 3) Average all the 
magnetic field features in a single grid.  

Linear interpolation: 1) Determine the position 
coordinates of the grid to be interpolated (e.g., grid 
No. 0 in Fig. 4), and set the search radius (e.g., 1m) 
of the effective grid. 2) Traverse the eight directions 
(i.e., east, south, west, north, northwest, northeast, 
southeast, and southwest) of grid No. 0. The grid with 
a valid magnetic field feature will be marked 
available (e.g., the grids numbered 1~7 in Fig. 4). 3) 
The grid No. 3 will be eliminated based on the fact 
that the magnetic field features can only be 
interpolated; 4) The other valid grids are used for 
obtaining the magnetic field features of grid No. 0 by 

linear interpolation. The linear interpolation formula 
can be expressed as 

 1 5 2 6 4 7
0 3

, , ,M M Μ
M

n n n
n + +
=                     (1) 

where 

 5 0 1 1 0 5
1 5

1 0 5 0

+
=,

M M
M

n n
n d d

d d
− −

− −+
, 6 0 2 2 0 6

2 6
2 0 6 0

+
=,

M M
M

n n
n d d

d d
− −

− −+
,

7 0 4 4 0 7
4 7

4 0 7 0

+
=,

M M
M

n n
n d d

d d
− −

− −+
, Mn

i  is the magnetic field 

feature in n-frame of the i-th grid, 

( ) ( )0 0 0i i id x x y y− = − + −  is the distance between 

the i-th grid and the 0-th grid. In addition, the bias 
compensation is necessary for the observed magnetic 
field signal accurately reflects the real environmental 
magnetic field. And the simple ellipsoid fitting 
method is employed for calibrating the magnetometer 
bias [17].  
 

7 1 2

3

4

56

0

 
Fig. 4. Obtain a magnetic field feature by linear 

interpolation. The presence of two valid 
magnetic field features in the same direction 
will only be used for the interpolation method. 

Compared with the traditional walking survey 
method, the proposed P-POS-based method has the 
advantages of high efficiency and high precision. 
This proposed solution allows the surveyor to walk 
on a trajectory of any shape at any walking speed, 
which greatly simplifies the data collection process. 
At the same time, the demand for the number of 
control points is greatly reduced, so the workload of 
surveyors to mark control points and the risk of 
incorrect control point correction are reduced. In 
addition, the proposed solution can provide the 
accurate smartphone attitude for expanding the 
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magnetic field map feature from 1~2 dimensions to 3 
dimensions at a low cost, which supports the 
projection of the reference magnetic field feature 
from n-frame to b-frame, thus forming a matching 
algorithm independent of the magnetometer bias, as 
will mentioned in the next section. 

4 Real-time Positioning Stage 

The relative trajectory and attitude generated by 
PDR play a very important role in our MFMP 
algorithm. And the relative trajectory is used to 
correlate the magnetic field features to form a 
magnetic field profile, which helps to improve the 
position discrimination of the magnetic field features; 
the attitude is used to project the reference magnetic 
field profile from n-frame to b-frame, thereby 
constructing a matching algorithm independent of 
magnetometer bias. 
Magnetic Field Profile 

A magnetic field feature at a single location has 
low dimensionality (e.g., at most 3 dimensions) and 
is far from sufficient to provide accurate MFMP. 
Therefore, magnetic field feature time sequence 
(MFFTS) is widely used as an improvement scheme. 
As shown in Fig. 5, the user has passed through four 
positions A, B, C, D, etc., and combined the magnetic 
field features of the four points to form a magnetic 
field feature time sequence. However, the MFFTS 
still does not fully exploit the strong correlation 
between magnetic field features and spatial position. 
Therefore, this paper uses the relative trajectory 
generated by the PDR to correlate the MFFTS to give 
the relative spatial topological properties between the 
four positions (such as the azimuth and distance 
between the next point and the previous point), 
thereby further improving the position discrimination 
of the magnetic field features, called the magnetic 
field profile (MFP). 

The INS-based PDR (INS-PDR) algorithm is used 
to provide the relative trajectory, which the detailed 
algorithm can be found in [13]. The reason to use 
INS-PDR is that it can achieve more robust 
positioning performance as the regular 
step-model-based PDR, while INS-PDR can also 

provide 3D position, velocity, and attitude at higher 
frequencies (e.g., 20 Hz). Based on the relative 
position and attitude output by the PDR algorithm, 
the observed magnetic field profile can be expressed 
as 

 
( )

( )

1 11

n n b
b

obs

n n b
k b kk

r C M

MFP

r C M

 
  =  
 
  







                (2) 

where rn  is the plane position in n-frame, Cn
b  is the 

cosine matrix of the direction from b-frame to 
n-frame, provided by the INS-PDR algorithm, Mb  
is the raw observation of the magnetometer, and k is 
the length of a magnetic field profile. Since high 
sampling rate data will bring a lot of useless 
calculations, we use the magnetic field profile with a 
sampling rate of 2Hz to reduce the computational 
load of the matching algorithm while ensuring 
positioning accuracy. 

 

Fig. 5. Magnetic profile on magnetic field map. A 
magnetic field profile consists of magnetic 
field time series and corresponding relative 
trajectories. 

Magnetic Field Profile Based Matching 
Algorithm 

The basic condition for MFMP to be feasible is 
that the magnetic field features observed by different 
users on the same path are consistent. Thus, the 
problem of MFMP can be simplified to find the 
conversion relation between relative trajectory and 
absolute trajectory. And the conversion relationship 
mainly includes translation and rotation. Since the 
conversion relationship and absolute trajectory 
coordinates are parameters to be solved, they cannot 
be directly obtained through mathematical analysis. 
Therefore, we generate all possible reference 
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trajectories using a parametric search method and 
compare the similarity of the observed MFP with the 
reference MFP to determine the conversion 
relationship. Fig. 6 shows the specific process of 
generating candidate reference trajectory. 1) Obtain 
the relative trajectory S  based on the relative 
position sequence calculated by PDR, and rotate the 
trajectory S  around its initial point θ∆  to obtain 
the trajectory S ′ . 2) Translate the trajectory S ′  in 
the north-south direction n∆  to obtain the trajectory 
S ′′ , 3) Translate the trajectory S ′′  along the 
east-west direction translate e∆  to obtain trajectory 
S ′′′ . 

 
Fig. 6. The generation process of multiple candidate 

trajectories. All possible candidate 
trajectories are generated by traversing the 
translation parameter ( ) n e∆ ∆,  and rotation 
parameter θ∆ . 

The candidate trajectory S ′′′ can be expressed as: 

( ) ( )1 1
n n n n n
j jθ∆ ∆r C r r r r′ = − + +    (3) 

where [ ]r Tn n e∆ ∆ ∆= , 

     ( ) ( ) ( )
( ) ( )

θ θ
θ

θ θ
∆ ∆

∆
∆ ∆

cos sin
C

sin cos
 −

=  
 

, 

rn
j
′  is the coordinates of the j-th point of the 

candidate reference trajectory. The corresponding 
direction cosine matrix Cn

b  also needs to be adjusted 
accordingly 

 ( ) ( )n n n
b nj jbC C C′ ′=                          (4) 

where ( )n
b j

C ′  is the directional cosine matrix from 

b-frame to n-frame corresponding to the j-th point of 

the candidate reference trajectory and 

( ) ( )
( ) ( )

0
0

0 0 1

n
n

θ θ
θ θ

∆ ∆
∆ ∆

cos sin
C sin cos′

 −
 =  
  

. 

Since the magnetic field map is composed of 

uniformly distributed reference points, the sampling 

points of the candidate reference trajectory cannot be 

exactly coincident with the reference points. 

Therefore, the bilinear interpolation method is used 

to obtain the reference magnetic field feature with 

higher resolution [5], as shown in Fig. 7. 

 

 

Fig. 7. Reference magnetic feature at (n, e) from the 
bilinear interpolation method. 

A given point coordinate ( )n e , its 
corresponding reference magnetic field feature is 

 1 0 1 2 0 0 3 1 1 4 1 0
n n n n nα α α α, , , ,M M M M M≈ + + +   (5) 

where 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 0 1 1
1 2

1 0 1 0 1 0 1 0

0 0 0 1
3 4

1 0 1 0 1 0 1 0

,

,

n n e e n n e e
n n e e n n e e

n n e e n n e e
n n e e n n e e

α α

α α

− − − −
= =

− − − −

− − − −
= =

− − − −  
The reference magnetic field profile can be expressed 
as 

 

( )

( )

1 11

n n b
b

ref

n n b
k b kk

r C M

MFP

r C M

′ ′

′ ′

 
  =  
 
  

                (6) 

where ( )1 11

Tb n
b

nM C M′=  is the reference magnetic field 

profile in b-frame. 

Due to the magnetometer bias being a constant 
value in a short time (e.g., 15 seconds), the 
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differential MFP in b-frame is used for eliminating 
the influence of the magnetometer bias. However, the 
large noise characteristic of the smartphone built-in 
magnetometer affects the selection of the reference 
point for the calculation of the differential MFP. The 
proposed solution performs de-averaging processing 
on the observed MFP and the reference MFP 
respectively. And the DTW algorithm is used to 
calculate the similarity between the observed MFP 
and the reference MFP, the latest position of the 
reference trajectory with the highest similarity is the 
estimated user position. DTW compresses or 
stretches the reference axis of the two sequences to 
be matched so that two sequences with different 
lengths have better matching results. This will help 

solve the issue that the PDR algorithm cannot 
accurately estimate the pedestrian step length. 

5 Test Results and Analysis 

Test Description 

The test scene is a typical office building scene 
with size of 94m×22m. Fig. 8 shows the specific 
indoor structure, and the red dash line marks the test 
area. To evaluate the performance of the real-time 
magnetic field matching positioning algorithm, this 
paper uses an offline method to analyze the 
positioning accuracy, and the reference truth position 
is provided by P-POS. Table 1shows the error 
parameters of all the IMUs involved in this paper. 

 
Fig. 8. Indoor structure. The red box is the test area. 

Table 1. Error Parameters of the IMUs 

 
5.2 Magnetic Field Map 

Three smartphones (such as Google pixel2, pixel3, 
and Mi8) are employed to generate the magnetic field 
map of the test area, which take 13.3, 13.7, and 12.8 
minutes, respectively. And the effective area is about 
500 m2, so the average data collection efficiency of 
the magnetic field map is about 37m2/min. If an 
indoor open area with an area of 100 m2 is tested, 
based on the "S" path method and calculated at a 

pedestrian speed of 1.2 m/s, the data collection 
efficiency will reach 55 m2/min. Compared with the 
data collection efficiency (i.e., 30 m2/min) of the 
state-of-the-art conventional method in [18], the 
proposed method almost doubled the efficiency. 
Moreover, the measurement efficiency evaluation of 
traditional methods usually ignores the workload of 
coordinate measurement of control points and 
re-measurement caused by the error of the surveyors. 

Parameter 
Foot-mounted 

IMU 
Honor V10 

Google pixel2 
 & Mi8 

Google pixel3 

Gyroscope noise 
(ARW) 0.004 º/s /√Hz 0.005 º/s /√Hz 0.007 º/s /√Hz 0.0038 º/s /√Hz 

Gyroscope bias change 
vs. temperature 0.01º/s/ºC 0.05º/s/ºC 0.05º/s/ºC 0.01º/s/ºC 

Accelerometer noise 
(VRW) 0.1 mg/√Hz 0.13 mg/√Hz 0.3 mg/√Hz 0.13 mg/√Hz 

Accelerometer bias 
change vs. temperature 1 mg/ºC 0.5 mg/ºC 1 mg/ºC 0.1 mg/ºC 
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Therefore, the proposed method can achieve much 
higher measurement efficiency than traditional 
methods in practical applications due to fewer control 
points and simpler operation procedures. 

Due to the lack of a high-precision magnetic field 
map reference, we use the within-accuracy 
coincidence of the magnetic field map to evaluate the 
performance of the proposed method. Fig. 9 shows 
the magnetic field map generated using Google 
pixel2. The vertical axis and the horizontal axes are 
the north and east positions respectively, and the 
colors represent the values of the magnetic field 
feature. Subgraphs (a) ~ (c) are the north, east and 
down components. The magnetic field features 
transition smoothly with the change of the region, 
which is in line with the real case. Fig. 10 shows the 
difference between the magnetic field map using 
Mi-8 and Google pixel2. The differences in the 
magnetic field map in most areas are distributed 
around 0 milligauss (mGauss), indicating that the 
P-POS provides position and attitude with good 
repeatability. In addition, the difference reached 
about 100 mGauss in some areas. This is because the 
accuracy of P-POS is limited (such as decimeter level) 

and there is a position projection error caused by the 
relative position change between the smartphone and 
the Foot-INS. In addition, the magnetic field feature 
decay with the 3rd power of the spatial distance [19], 
small position and attitude errors will cause obvious 
magnetic field feature deviation when approaching a 
magnetic field interference source. 
To present the consistency of the magnetic maps in a 
quantitative way, Fig. 11 shows the cumulative 
density function of the difference in the magnetic 
field maps using two different smartphones. Table 2 
shows the root mean square (RMS), 68%, and 95% of 
the difference in the magnetic field maps using two 
different smartphones. The difference in the three 
directions of the magnetic field maps using any two 
smartphones is less than 20 mGauss (RMS), and 95% 
of the difference is less than 40 mGauss. Compared 
with the noise level of magnetometers built-in most 
smartphones are about ±10~±20 mGauss, and the 
errors caused by P-POS and map generation 
algorithms are very small. Therefore, the proposed 
magnetic field map generation method has the 
characteristics of high efficiency and high precision

 
Fig. 9. Magnetic field map using Google pixel2. (a) North, (b) East, (c) Down 
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Fig. 10. The difference of two magnetic field maps using Mi 8 and Pixel 2. (a) North, (b) East, (c) Down. 

 

Table 2. Root mean square, 68% and 95% of the difference of magnetic 
field maps using different smartphones (unit: mGauss) 

 
Mi8- Pixel3 Mi8-Pixel2 Pixel2- Pixel3 

RMS 68%/95% RMS 68%/95% RMS 68%/95% 
North ±16.0 ±12.1/±32.3 ±13.0 ±10.1/±25.2 ±18.4 ±16.2/±35.6 
East ±19.4 ±16.7/±39.1 ±14.7 ±13.1/±28.7 ±19.1 ±18.3/±36.3 

Down ±13.6 ±11.6/±27.7 ±17.0 ±15.8/±32.6 ±18.4 ±17.6/±36.2 

 

Fig. 11. The cumulative density function of the difference of three generated magnetic 
field maps using two different smartphones 

5.3 Real-time Positioning Performance Analysis 

Since the magnetic field features do not have the 
global positioning capability, MFMP is usually used 

as an auxiliary positioning method. Here, the initial 
position is manually given, and WiFi/Bluetooth can 
be used to give a rough position (such as the position 
error less than 10m) for the real-time positioning 
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application. As the proposed algorithm is insensitive 
to the magnetometer bias, so the real-time positioning 
algorithm evaluation stage will no longer need to 
perform bias compensation on the magnetometer 
observations.  

Based on the magnetic field map generated with 
Pixel2, we conducted 8 tests using 4 different models 
of smartphones (including Honor V10, Google Pixel2, 
Pixel3, and Mi8). To be consistent with the user 
movements in the real scene, the testers walked on a 
straight trajectory in corridor area and walk on an 
irregular curved trajectory in open area. Fig. 12 
shows the trajectories of these 8 tests. The red line is 

the reference truth trajectory (given by P-POS); the 
blue line is the PDR trajectory, and the green line is 
the trajectory of MFMP. The sub-pictures (a) and (b) 
correspond to Honor V10, (c) and (d) correspond to 
Google Pixel3, (e) and (f) correspond to Mi 8, (g) and 
(h) correspond to Google Pixel2. The trajectories 
generated by the PDR in all tests have different scale 
and deformation error, and the trajectories of MFMP 
has a good degree of coincidence with the reference 
trajectories. We can learn that the relative trajectory 
and attitude with errors provided by PDR can be used 
to improve the performance of magnetic field 
matching. 

 
Fig. 12. The trajectories of 8 tests using 4 smartphones. (a) and (b) correspond to Honor V10, (c) and (d) 

correspond to Google Pixel3, (e) and (f) correspond to Mi 8, (g) and (h) correspond to Google Pixel2 

Fig. 13 shows the cumulative density function of 
position error for 8 tests, and "V10-1" is the first test 
of Honor V10. The positioning errors are relatively 
concentrated and most of which are within 1.5 meters. 
Table 3 summarizes the RMS, 68% and 95% of the 
position error for 8 tests. The RMS of the position 
errors of the 8 tests distribute in ±0.67~±1.01m, and 
the fluctuation range (i.e., 0.34m) of the positioning 
error is smaller than the length of a pedestrian step 
(about 0.6 meters). We can learn that the MFMP 
algorithm designed in this paper is not sensitive to the 
magnetometer bias, and the positioning performance 
difference between multiple smartphones is also 
small. The mean value of the RMS, 68% and 95% are 
±0.83m, ±0.79m, and ±1.60m, respectively, which 
shows that the method proposed in this paper can 

reach the meter-level/sub-meter-level positioning 
accuracy. 

6 Conclusion and Outlook 

This study proposed an indoor magnetic field 
matching positioning solution of smartphone based 
on consumer-grade IMU. The solution has greatly 
improved the relative positioning and attitude 
estimation ability of the consumer-grade IMUs by 
using the constraint information formed by the 
pedestrian movement characteristics. The magnetic 
field map construction efficiency and real-time 
positioning stability have consequently been 
enhanced significantly. 
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Table 3. RMS: 68% and 95% of positioning error of 8 tests (unit: m) 

 
Fig. 13. Cumulative density function of position error of 8 tests 

In the magnetic field map generation stage, a 
P-POS is used to provide decimeter-level positioning 
and degree-level attitude (including roll, pitch, and 
heading) of the smartphone. The test results of using 
three smartphones to generate magnetic field maps 
show that the data collection efficiency of the 
proposed method has reached 37m2/min and 
55m2/min maximum, and the inconsistency of the 
magnetic field maps using different smartphones is 
less than 20 mGauss (RMS). 

In the real-time positioning stage, the position and 
attitude provided by PDR are used to improve the 
position discrimination of the magnetic field features 
and obtain the transformation relationship from the 
navigation frame to the sensor frame, so that the 
differential MFP in b-frame can be used for 
eliminating the impact of the magnetometer bias. The 
results from 8 field tests using 4 models of 
smartphones showed the positioning errors between 
±0.67 and ±1.01 meters, reaching an average RMS 
value of ±0.83 meters. The experimental results have 
completely verified that the MFMP method proposed 
in this study is immune to the magnetometer bias, 

and there is no significant difference in positioning 
performance between different models of 
smartphones. 

Because the smartphone-based indoor MFMP 
scheme proposed in this study is highly dependent on 
the stability of the PDR, we will focus on 
automatically monitoring the integrity of the PDR 
and adapting it to a variety of typical smartphone 
usage modes in the future, such as texting, calling, 
and swinging. More importantly, we will explore the 
method of generating magnetic field maps based on 
crowdsourced data to further reduce the cost of the 
whole solution. 

Remark: This paper has been originally published in 
the proceeding of China Satellite Navigation 
Conference (CSNC 2021). 
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Abstract: Differential code bias (DCB) significantly 
affects the ionosphere modeling, precise positioning, 
and navigation applications when using code 
observations. With the fully completed BeiDou 
navigation satellite system (BDS-3), there exist various 
DCBs of new frequencies and types which should be 
handled. However, limited types of DCB products for 
BDS-3 are provided by the analysis institutions (e.g., 
Chinese Academy of Science (CAS) and German 
Aerospace Center (DLR)). Hence, for some DCB 
corrections of new frequencies, they are generally 
generated by complex linear combinations, which are 
not friendly to users and may degrade the accuracy. In 
this study, the estimation method of DCB for BDS-3 is 
introduced first. Then, the BDS-3 observations from 40 
globally distributed stations are selected to estimate the 
DCBs, including 19 types of DCBs of new frequencies 
for BDS-3. Moreover, the estimated DCBs are 
carefully analyzed in terms of inner consistency, 
external consistency, and stability. For the results of 
inner consistency, most closure error series are within 
0.2 ns, and the closure error series of each satellite 
fluctuate near zero and have no obvious systematic 
deviations. For the results of external consistency, the 
mean deviations of estimated DCBs of each satellite are 
mainly within 0.3 ns and 0.2 ns for the common types 
of DCB products of CAS and DLR, respectively. For 
the results of stability, the mean values of monthly 
STDs for the estimated DCBs are all smaller than 0.12 
ns, which exhibits good stability. The STDs of the 
directly estimated DCBs are generally smaller than that 
of the DCB combinations of DLR and CAS. In this 
sense, the directly estimated DCBs for BDS-3 exhibits 
good performance in terms of accuracy and stability in 
this study, which can further provide the DCB 
corrections for precise positioning and navigation 
applications. 

Keywords: GNSS; BDS-3; multi-frequency; 
differential code bias; MGEX 

1. Introduction 

Differential code bias (DCB) physically is defined 
as the difference in time delays between two different 
types of code observations. It includes intra-frequency 
DCB (e.g., C1W-C1C DCB) and inter-frequency DCB 
(e.g., C1W-C2W DCB) at the satellite or receiver side 
[1–3]. The DCB not only significantly affects the 
ionosphere modeling [4,5], but also is the error source 
in precise positioning, navigation, and timing 
applications of Global Navigation Satellite System 
(GNSS) when using code observations [6–8]. Hence, it 
is of great importance to estimate the DCBs and 
analyze their property, which can further provide the 
DCB corrections for GNSS applications. 

There exist two major DCB estimation methods 
depending on the way of ionosphere modeling. The 
first one is to estimate the DCBs with a global or local 
ionosphere model simultaneously [9,10]. Another one 
is to estimate the DCBs after eliminating the 
ionosphere delays with a prior ionosphere model (e.g., 
German Aerospace Center (DLR)) [11,12]. The prior 
ionosphere models generally include the global 
ionospheric map (GIM) and some broadcast 
ionospheric models  [13]. In addition, the DCBs can 
also be estimated by modeling the vertical total electron 
content (VTEC) above each station in the GNSS 
networks (e.g., Chinese Academy of Science (CAS)) 
[3,5]. Apart from the estimated DCBs by GNSS 
observations from ground stations, the estimation of 
DCBs can rely on the onboard observations from low-
earth orbit (LEO) satellites [14–16]. The LEO solutions 
can achieve comparable and even better stability 
compared to the ground-based solutions from the 
global ground GNSS networks [17,18]. The 
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aforementioned methods and observation sources for 
DCB estimation are used to obtain the DCB products of 
Global Positioning System (GPS) and BeiDou Satellite 
Navigation System (BDS) in recent years [19–21]. 

Currently, the construction of BDS-3 was fully 
completed with providing global services to GNSS 
users. However, there exist various DCBs of new 
frequencies and types which should be handled for 
BDS-3 [22,23]. At this time, it leads to a new situation 
with the following problems and limitations. First, 
some analysis institutions (e.g., DLR and CAS) only 
provide specific and limited types of DCB for BDS-3, 
which is not friendly to GNSS users in the situation of 
many new frequencies and code types. Second, the 
DCB corrections are usually added to the code 
observations by linear combinations of different types 
of DCB products currently. This will degrade the 
accuracy of DCB corrections, because the value 
derived from the linear combination cannot fully 
represent the true value due to various reasons, which 
may affect the GNSS applications.  

To cope with these problems and limitations, there 
exists an urgent need to estimate the DCBs of new 
frequencies and code types for BDS-3. Therefore, in 
this study, the estimation method of DCB for BDS-3 is 
introduced first. Then, the BDS-3 observations from 40 
globally distributed multi-GNSS experiment (MGEX) 
stations are selected to estimate the DCBs, including 19 
types of DCBs of new frequencies for BDS-3. 
Moreover, the estimated DCBs are carefully analyzed 
in terms of inner consistency, external consistency, and 
stability compared to the DCB products provided by 
CAS and DLR.   

2. Estimation method of BDS-3 DCBs 

The dual-frequency code observations of arbitrary 
frequencies can be expressed as follows: 

�
𝑃𝑟,𝑖
𝑠 = 𝜌𝑟𝑠 + 𝑐 ∙ (𝑑𝑡𝑟 − 𝑑𝑡𝑠) + 𝑇𝑟𝑠 + 𝐼𝑟,𝑖

𝑠 + 𝑏𝑟,𝑖 + 𝑏𝑖𝑠 + 𝜀𝑟,𝑖
𝑠

𝑃𝑟,𝑗
𝑠 = 𝜌𝑟𝑠 + 𝑐 ∙ (𝑑𝑡𝑟 − 𝑑𝑡𝑠) + 𝑇𝑟𝑠 + 𝐼𝑟,𝑗

𝑠 + 𝑏𝑟,𝑗 + 𝑏𝑗𝑠 + 𝜀𝑟,𝑗
𝑠  

 (1) 
where 𝑃𝑟,𝑖

𝑠  and 𝑃𝑟,𝑗
𝑠  denote the code observations on 

frequency 𝑖  and 𝑗 , respectively, the superscript 𝑠  and 
subscript 𝑟  denote the satellite and receiver, 
respectively, 𝜌𝑟𝑠  denotes the geometric distance 
between the satellite and receiver, 𝑐 is the light speed in 
vacuum, 𝑑𝑡𝑟  and 𝑑𝑡𝑠  denote the clock errors of the 
receiver and satellite, respectively, 𝑇𝑟𝑠  denotes the 
tropospheric delays,  𝐼𝑟,𝑖

𝑠  and 𝐼𝑟,𝑗
𝑠  denote the ionospheric 

delays on frequency 𝑖 and 𝑗, respectively, 𝑏𝑟,𝑖  and 𝑏𝑟,𝑗 
denote the receiver time delays on frequency 𝑖 and 𝑗, 
respectively, 𝑏𝑖𝑠 and 𝑏𝑗𝑠 denote the satellite time delays 
on frequency 𝑖  and 𝑗 , respectively, and 𝜀𝑟,𝑖

𝑠  and 𝜀𝑟,𝑗
𝑠  

denote the code noises on frequency 𝑖  and 𝑗 , 
respectively. Based on (1), the code geometry-free (GF) 
combination on frequency 𝑖 and 𝑗 is deduced as follows: 
𝑃𝑟,𝑖𝑗
𝑠 = 𝑃𝑟,𝑖

𝑠 − 𝑃𝑟,𝑗
𝑠  

= �𝐼𝑟,𝑖
𝑠 − 𝐼𝑟,𝑗

𝑠 � + �𝑏𝑟,𝑖 − 𝑏𝑟,𝑗� + �𝑏𝑖𝑠 − 𝑏𝑗𝑠� + ∆𝜀𝑟,𝑖𝑗
𝑠   (2) 

where 𝑃𝑟,𝑖𝑗
𝑠  denotes the code GF combination. As the 

ionospheric delays are frequency dependent, the 
combined delay can be eliminated when the selected 
frequencies of GF combination are same. Otherwise, 
the ionospheric delays can be corrected by the high-
precision GIM products and the corresponding 
mapping function.  

The effect of observation noises can be degraded by 
averaging the results of GF combinations. At this time, 
the DCB combination of satellite and receiver can be 
expressed as follows: 

 𝐷𝐶𝐵𝑟,𝑖𝑗 + 𝐷𝐶𝐵𝑖𝑗𝑠 = 1
𝑁
∑  𝑁
𝑡=1 �𝑃𝑟,𝑖

𝑠 (𝑡) − 𝑃𝑟,𝑗
𝑠 (𝑡) − 40.28 ⋅

( 1
𝑓𝑖
2 −

1
𝑓𝑗
2) ⋅ 𝑆𝑇𝐸𝐶𝑟𝑠�  (3) 

where 𝐷𝐶𝐵𝑟,𝑖𝑗 = 𝑏𝑟,𝑖 − 𝑏𝑟,𝑗  is the receiver’s DCB on 
frequency 𝑖  and 𝑗 , 𝐷𝐶𝐵𝑖𝑗𝑠 = 𝑏𝑖𝑠 − 𝑏𝑗𝑠  is the satellite’s 
DCB on frequency 𝑖 and 𝑗, 𝑁 is the number of epochs 
over a continuous period, 𝑡 is the current observation 
time, 𝑓  is the frequency of code observations, and 
𝑆𝑇𝐸𝐶𝑟𝑠  is the slant total electron content (STEC) in 
TECU. Therefore, the DCB estimation model can be 
deduced as follows:    
𝑳sum = 𝑭 ⋅ 𝑿�DCB                                                        (4) 
wherein 𝑳sum  is the vector of DCB combination of 
satellite and receiver,  𝑭 is the design matrix, and 𝑿�DCB 
is the estimated DCB vector. Specifically, 𝑭 and 𝑿�DCB 
are given as follows: 

�
𝑿�DCB

(𝑢1+𝑢2)×1
= �𝑿�𝑠,DCB

𝑢11
,𝑿�𝑟,DCB

𝑢21
�
T

𝑭
𝑛×(𝑢1+𝑢2)

= � 𝑨
𝑛×𝑢1

, 𝑩
𝑛×𝑢2

�              
                             (5) 

where 𝑿�𝑠,DCB  and 𝑿�𝑟,DCB  are the DCB vector of 
satellite and receiver, respectively, 𝑨  and 𝑩  are the 
design matrix for satellite and receiver, respectively, 
and 𝑢1  and 𝑢2  are the numbers of satellites and 
receivers, respectively. The zero-mean constraint for 
the DCB of all satellites is introduced to separate the 
DCBs of satellites and receivers, which is as follows: 

 �
𝑺 ⋅ 𝑿�DCB = 𝟎

𝑺
1×(𝑢1+𝑢2)

 = � 𝒆
1×𝑢1

, 𝟎
1×𝑢2

� , 𝒆 = [1,⋯ ,1]
1×𝑢1

                    (6) 

where 𝑺  is the design matrix of the zero-mean 
constraint. Then, the DCBs of the satellites and 
receivers can be estimated simultaneously by the least-
square adjustment, which is as follows: 
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 �
𝑿�DCB = (𝑵 + 𝑺𝑻𝑺)−𝟏𝑾
𝑫𝑋�𝑋�   = 𝜎02 ⋅ (𝑵 + 𝑺T𝑺)−1

𝑵 = 𝑭T𝑷𝑭,𝑾 = 𝑭T𝑷𝑳sum
                                      (7) 

where 𝑫𝑋�𝑋�  is the variance matrix of the estimated 
DCBs, 𝜎02 is the variance of unit weight, and 𝑷 is the 
weight matrix. 

3. Experiments and analysis 

In this section, the data description and processing 
strategy are given first. Then, the internal consistency, 
the external consistency, and the stability of the 
estimated BDS-3 DCBs are carefully analyzed 
compared to the products of DLR and CAS. 
3.1 Data description and processing strategy 

The BDS-3 observations from 40 globally distributed 
MGEX ground stations are selected to estimate the 
DCBs in this study. The processing period is 
continuous 30 days from day of the year (DOY) 60 to 
89 in 2021. The distribution of the 40 GNSS stations is 
displayed in Figure 1. In addition, the types of DCBs of 
new frequencies for BDS-3 are shown in Table 1, as 
well as the used stations for estimating each type of 
DCB. It can be found that there exist 19 types of DCBs 
that need to be estimated, and the numbers of the used 
stations for each type of DCB are all larger than 14. 
There exists a realignment problem before comparing 
the estimated DCBs in this study, and the specific 
procedure of solving it can refer to [24]. For the 
processing strategy, the ionospheric delays of the code 
GF combinations are corrected by the GIM products 
provided by CODE with an interval of one hour. The 
cut-off satellite elevation is set to 20°. The minimum 
continuous observation arc is set as one hour. The least-

square estimator is selected, and the weight matrix is 
determined by the STD of the GF combination series. 
The flowchart of the DCB estimation is also shown in 
Figure 2. 

Table 1 Type of the DCB of new frequencies for BDS-
3 and the corresponding used stations 
Type Number of the used stations 

C1P-C2I 22 
C1P-C5P 22 
C1P-C6I 22 

C1X-C5X 17 
C1X-C6I 17 
C1X-C7Z 14 
C1X-C8X 14 
C2I-C1X 17 
C2I-C5X 18 
C2I-C7Z 15 
C2I-C8X 15 
C5P-C2I 22 
C5P-C6I 22 
C5X-C6I 15 
C5X-C7Z 15 
C5X-C8X 15 
C6I-C7Z 15 
C6I-C8X 15 
C7Z-C8X 15 

 

 
Figure 1 Distribution of the 40 globally distributed MGEX ground stations 
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Figure 2 Flowchart of the DCB estimation for BDS-3, where the benchmarks denote 

the zero-mean constraint condition 

3.2 Inner consistency of the estimated BDS-3 DCBs 

Theoretically, the closure error for each satellite of 
these types of DCBs is equal to zero (e.g., 
DCB𝐶2𝐼−𝐶5𝑃 − DCB𝐶1𝑃−𝐶2𝐼 − DCB𝐶1𝑃−𝐶5𝑃 = 0 ). 
However, the closure error usually exhibits non-zero in 
practical estimation due to the effects of observation 
noises and unmodeled errors. Hence, the property of 
the closure error can be used to evaluate the inner 
consistency of these estimated BDS-3 DCBs. For 
example, the daily closure error series of the estimated 
DCBs for each satellite are shown in Figures 3 to 6, 
including the types of C1P-C2I-C5P, C1P-C5P-C6I, 
C1X-C2I-C5X, and C1X-C5X-C6I. It can be found that 
most of these closure error series for each satellite are 
within 0.2 ns, and the closure error series of each 
satellite fluctuate near zero and have no obvious 
systematic deviations. In addition, the closure error 

series of C1P-C2I-C5P and C1P-C5P-C6I are within 
0.1 ns, and smaller than that of other types. However, 
the closure error for some satellites exhibits large on 
some days (e.g., the closure error of C45 reaches 0.45 
ns on DOY 67 and 88 for the type of C1X-C2I-C5X). 
The reason for this can be attributed to the insufficient 
number of processing epochs for the satellite on that 
day. 

The mean values and STDs of closure error for the 
types of C1X-C2I-C5X and C1X-C5X-C6I are further 
shown in Figures 7 to 8, respectively. As shown in the 
figures, the mean values of closure error for each 
satellite are within 0.2 ns, and most of them are within 
0.1 ns. In addition, the STDs of closure error for each 
satellite are within 0.3 ns. Hence, the inner consistency 
of estimated BDS-3 DCBs in this study exhibits good 
performance. 



 

 
Figure 3 Daily closure error series for the type of C1P-C2I-C5P 

 
Figure 4 Daily closure error series for the type of C1P-C5P-C6I 

 
Figure 5 Daily closure error series for the type of C1X-C2I-C5X 

 
Figure 6 Daily closure error series for the type of C1X-C5X-C6I 
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Figure 7 Mean values and STDs of closure error for the type of C1X-C2I-C5X 

 
Figure 8 Mean values and STDs of closure error for the type of C1X-C5X-C6I 

3.3 External consistency of the estimated BDS-3 
DCBs 

To further evaluate the external consistency of the 
estimated BDS-3 DCBs in this study (Hohai University, 
HHU), the DCB products of both DLR and CAS are 
used as references. Specifically, the DCB products of 
DLR and CAS are available at 
ftp.aiub.unibe.ch/CODE/  and 
ftp.gipp.org.cn/product/dcb/mgex/, respectively. For 
the common types of DCB products in HHU and the 
other two institutions, the deviation results can be 
obtained directly, which are defined as the directly 
estimated DCBs in this study. However, due to the 
limited DCB products provided by DLR and CAS, 
some estimated DCBs cannot be compared with the 
DCB products of DLR and CAS directly. Hence, the 
deviation results can be obtained by using the linear 
combinations of DCB products, which are defined as 
the DCB combinations in this study. Also, there may 
exist a datum transformation between the compared 
satellite sets [3]. The daily deviation series of the 
estimated DCBs for the types of C1P-C6I and C2I-C1X 

compared to CAS and DLR are depicted in Figures 9 to 
10, respectively. It can be found that the accuracy of 
the estimated DCBs exhibits comparable performance 
compared to CAS and DLR, and the daily deviations 
for most satellites are within 0.2 ns. In addition, the 
monthly mean deviations of each satellite between 
HHU and the other two institutions are shown in 
Figures 11 to 14. It can be found that the mean 
deviations for each satellite between HHU and CAS are 
mainly within 0.3 ns, and the mean deviations for each 
satellite between HHU and DLR are mainly within 0.2 
ns for the directly estimated DCB products. This 
verifies a good external consistency for the estimated 
BDS-3 DCBs in this study. Moreover, most mean 
deviations for each satellite between HHU and DCB 
combinations products of CAS and DLR are both 
within 0.6 ns. The accuracy of the directly estimated 
DCBs behave better than that of DCB combinations 
products, which further verifies the necessity to 
estimate the multi-frequency DCBs directly for BDS-3 
satellites. 

 



 

 
Figure 9 Daily deviation series of the estimated DCBs for the type of C1P-C6I 

 
Figure 10 Daily deviation series of the estimated DCBs for the type of C2I-C1X 

 
Figure 11 Mean deviations of each satellite for the directly estimated DCBs between HHU and CAS 
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Figure 12 Mean deviations of each satellite for the DCB combinations between HHU and CAS 

 
Figure 13 Mean deviations of each satellite for the directly estimated DCBs between HHU and DLR 

 
Figure 14 Mean deviations of each satellite for the DCB combinations between HHU and DLR 

The monthly mean deviations of each satellite 
between HHU and the other two institutions are further 
listed in Tables 2 and 3 in detail. The HHU-CAS-1 
denotes the mean deviations between the directly 
estimated DCBs of HHU and the DCB combinations 
products of CAS. The HHU-CAS-2 denotes the mean 
deviations between directly estimated DCBs of HHU 
and CAS. Similar definitions are used for HHU-DLR-1 
and HHU-DLR-2, respectively. The bolded values are 

the mean deviations which are relatively large in the 
Tables. It can be found that the numbers of bolded 
values of HHU-CAS-1 and HHU-DLR-1 are 
significantly more than HHU-CAS-2 and HHU-DLR-2, 
respectively. Similar conclusions can be found in 
Figures 11 to 14, and this verifies the necessity to 
estimate the multi-frequency DCBs directly for BDS-3 
satellites again. 



 

Table 2 Monthly mean deviations of DCBs between HHU and CAS for each satellite (unit: ns) 

PRN 
HHU-CAS-1  HHU-CAS-2 

C5XC6I C5XC7Z C5XC8X C6IC7Z C6IC8X C7ZC8X  C1PC5P C1PC6I C1XC5X C1XC6I C1XC7Z C1XC8X 
C19 -0.02 -0.09 -0.12 0.05 0.03 -0.02  -0.03 -0.03 -0.07 -0.15 -0.04 -0.08 
C20 -0.04 0.07 -0.09 0.32 0.18 -0.16  -0.02 -0.03 0.04 -0.05 0.18 0.02 
C21 -0.02 0.07 0.04 -0.05 -0.08 -0.03  0.01 -0.01 0.06 0.07 0.13 0.11 
C22 -0.01 -0.05 -0.06 0.12 0.14 0.01  0.01 -0.03 0.15 0.19 0.27 0.27 
C23 -0.02 -0.03 0.02 0.12 0.18 0.05  -0.04 -0.03 -0.20 -0.20 -0.25 -0.11 
C24 -0.04 -0.16 -0.20 0.01 0.01 -0.03  0.03 0.01 0.19 0.09 0.20 0.20 
C25 -0.04 0.09 0.12 0.13 0.15 0.02  0.01 0.01 0.07 0.06 0.02 0.06 
C26 -0.09 -0.05 0.04 0.14 0.21 0.10  0.02 0.03 0.15 0.06 0.06 0.15 
C27 -0.11 -0.10 -0.12 0.28 0.23 -0.02  0.00 -0.02 -0.17 -0.19 -0.20 -0.16 
C28 -0.14 -0.19 -0.25 0.21 0.13 -0.07  0.02 -0.03 -0.16 -0.20 -0.20 -0.22 
C29 0.02 -0.21 -0.02 -0.11 0.07 0.20  -0.07 -0.04 -0.06 -0.03 -0.25 -0.05 
C30 0.00 0.12 0.14 0.09 0.11 0.02  0.02 -0.02 -0.12 -0.08 -0.09 -0.07 
C32 0.09 0.25 0.29 0.09 0.15 0.04  -0.05 -0.01 -0.04 0.04 0.07 0.13 
C33 0.05 0.05 0.01 0.01 -0.02 -0.04  -0.03 -0.02 0.05 0.08 0.13 0.09 
C34 0.05 0.16 0.19 0.01 0.01 0.02  -0.03 -0.03 -0.06 0.05 -0.02 -0.00 
C35 0.03 0.24 0.22 0.07 0.04 -0.02  0.01 0.00 -0.07 0.06 0.01 0.01 
C36 0.09 0.40 0.49 0.07 0.09 -0.01  0.01 0.00 -0.08 0.07 0.02 0.01 
C37 0.11 0.23 0.25 -0.29 -0.25 0.03  0.00 -0.02 0.20 0.30 0.20 0.34 
C38 0.11 0.06 -0.06 -0.05 -0.18 -0.13  0.09 0.10 -0.02 0.09 0.17 0.01 
C39 0.16 -0.05 -0.10 -0.35 -0.40 -0.06  0.09 0.16 -0.13 0.04 -0.20 -0.27 
C40 -0.14 -0.26 -0.27 0.04 0.01 -0.02  0.02 0.01 0.11 -0.03 -0.10 -0.12 
C41 0.06 0.02 -0.02 -0.17 -0.19 -0.04  0.01 -0.05 0.01 0.04 0.03 -0.00 
C42 0.06 0.06 -0.01 -0.13 -0.19 -0.07  0.02 -0.02 0.04 0.08 0.13 0.07 
C43 -0.06 -0.10 -0.09 -0.23 -0.23 0.01  -0.02 0.03 -0.20 -0.22 -0.31 -0.27 
C44 0.06 -0.06 -0.04 -0.55 -0.47 0.02  -0.02 0.05 -0.20 -0.07 -0.25 -0.23 
C45 -0.05 -0.25 -0.19 0.14 0.19 0.06  -0.02 -0.02 0.20 0.09 0.17 0.23 
C46 -0.12 -0.22 -0.06 -0.07 0.10 0.16  0.00 -0.01 0.19 0.03 0.13 0.19 

 

3.4 Stability of the estimated BDS-3 DCBs 

To further analyze the stability of the estimated 
DCBs for BDS-3 in this study, the daily series of the 
estimated DCBs for the types of C1P-C5P and C2I-
C1X are depicted in Figures 15 to 16. It can be found 
that the daily DCB solutions for the type of C1P-C5P 
are between -40 ns~30 ns, and the daily DCB solutions 
for the type of C1P-C5P are between -6 ns~4 ns for all 
satellites. The daily DCB solutions for both two types 
exhibit good stability for each satellite. In addition, the 
monthly mean values of STDs for the estimated DCBs 
are listed in Table 4. The bolded values are the STDs of 
DCB combination products for DLR and CAS. It can 
be found that the monthly mean values of STDs for the 
estimated DCBs in this study are all smaller than 0.12 
ns, which exhibits good stability. The differences of 
STDs between HHU and the other two institutions are 

within 0.02 ns, which further illustrates the consistency 
of stability between them. Besides, the STDs of the 
directly estimated DCBs for HHU are generally smaller 
than that of the DCB combination products for DLR 
and CAS. This also verifies the necessity to estimate 
the multi-frequency DCBs directly for BDS-3 satellites. 
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Table 3 Monthly mean deviations of DCBs between HHU and DLR for each satellite (unit: ns) 

PRN  
HHU-DLR-1  HHU-DLR-2 

C1XC5X C1XC7Z C1XC8X C5XC7Z C5XC8X C7ZC8X  C2IC1X C2IC5X C2IC7Z C2IC8X 

C19 0.01 0.51 0.49 0.37 0.37 0.00  -0.01 -0.03 0.01 0.00 
C20 0.02 0.41 0.39 0.31 0.29 -0.02  -0.01 -0.01 0.06 0.04 
C21 0.02 0.11 0.10 0.09 0.07 -0.02  -0.02 0.00 0.03 0.01 
C22 0.06 0.23 0.24 0.00 0.00 0.02  -0.03 0.01 0.02 0.03 
C23 0.02 0.31 0.31 0.31 0.31 0.01  -0.01 0.00 0.03 0.04 
C24 0.12 0.16 0.13 -0.16 -0.19 -0.03  -0.02 0.07 -0.02 -0.04 
C25 0.07 0.08 0.07 0.15 0.12 -0.03  -0.01 0.07 0.01 0.00 
C26 0.12 -0.24 -0.26 -0.33 -0.33 0.00  -0.01 0.10 -0.06 -0.06 
C27 0.04 -0.12 -0.16 -0.20 -0.24 -0.04  0.01 0.04 0.01 -0.02 
C28 0.02 -0.17 -0.21 -0.27 -0.31 -0.04  0.03 0.04 0.01 -0.02 
C29 0.00 -0.26 -0.23 -0.28 -0.26 0.02  0.02 0.01 -0.08 -0.04 
C30 -0.03 -0.07 -0.08 0.05 0.04 -0.01  0.00 -0.03 0.00 0.00 
C32 -0.09 -0.24 -0.22 -0.01 -0.01 0.00  0.09 0.00 -0.03 -0.03 
C33 -0.03 0.03 0.02 0.03 0.01 -0.01  0.05 0.00 -0.01 -0.01 
C34 -0.03 0.05 0.01 0.21 0.17 -0.04  0.00 -0.02 -0.02 -0.06 
C35 -0.02 -0.13 -0.16 0.05 0.01 -0.03  0.01 0.01 0.00 -0.03 
C36 -0.03 -0.17 -0.17 0.16 0.15 0.00  0.03 0.03 0.01 0.02 
C37 0.01 0.03 0.04 0.14 0.15 0.01  0.03 0.05 -0.05 -0.03 
C38 0.24 0.32 0.39 -0.06 0.07 0.10  0.03 0.30 0.11 0.12 
C39 0.13 0.10 0.19 0.00 0.10 0.09  0.06 0.24 -0.02 0.02 
C40 0.11 0.15 0.21 0.00 0.07 0.06  0.09 0.20 0.01 0.05 
C41 -0.07 -0.02 -0.03 0.05 0.03 -0.02  0.05 -0.01 0.05 0.05 
C42 -0.03 -0.13 -0.14 -0.14 -0.15 -0.02  0.06 0.01 -0.02 -0.03 
C43 -0.02 0.00 -0.03 0.10 0.06 -0.06  0.01 -0.03 0.00 -0.03 
C44 -0.03 0.17 0.14 0.28 0.25 -0.03  0.01 -0.03 0.00 -0.01 
C45 -0.72 -0.54 -0.50 -0.02 0.02 0.04  -0.50 -1.22 -0.03 0.01 
C46 0.10 -0.57 -0.53 -0.83 -0. 80 0.03  0.04 0.18 0.00 0.04 

 
Figure 15 Daily solution series of the estimated DCB for the type of C1P-C5P 
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Figure 16 Daily solution series of the estimated DCB for the type of C2I-C1X 

Table 4 Monthly mean values of STDs for the 19 types 
of the estimated DCBs (unit: ns) 

Type HHU CAS DLR 
C1P-C2I 0.05 0.06 \ 
C1P-C5P 0.09 0.08 \ 
C1P-C6I 0.06 0.06 \ 
C1X-C5X 0.09 0.09 \ 
C1X-C6I 0.10 0.10 \ 
C1X-C7Z 0.11 0.09 \ 
C1X-C8X 0.11 0.10 \ 
C2I-C1X 0.06 0.09 0.07 
C2I-C5X 0.11 0.11 0.12 
C2I-C7Z 0.12 0.10 0.10 
C2I-C8X 0.12 0.12 0.10 
C5P-C2I 0.09 0.08 \ 
C5P-C6I 0.04 0.05 \ 
C5X-C6I 0.09 0.10 0.11 
C5X-C7Z 0.05 0.08 0.11 
C5X-C8X 0.03 0.07 0.10 
C6I-C7Z 0.12 0.14 0.11 
C6I-C8X 0.11 0.11 0.11 
C7Z-C8X 0.03 0.06 0.06 

4. Conclusions 

In this paper, we focus on the estimation and analysis 
of BDS-3 multi-frequency differential code bias, 
especially for the new frequencies. The estimation 
method of BDS-3 multi-frequency DCBs is introduced 
first, and then the estimated DCBs in this study are 
carefully analyzed compared to the DCB products of 
both DLR and CAS in terms of inner consistency, 
external consistency, and stability.   

For the results of inner consistency, most of these 
closure error series are within 0.2 ns, and the closure 
error series of each satellite fluctuate near zero and 
have no obvious systematic deviation. The monthly 
mean values of the closure errors for each satellite are 
within 0.2 ns, and most of them are within 0.1 ns. 
Hence, the inner consistency of the estimated BDS-3 
DCBs in this study exhibits good performance. For the 
results of external consistency, the mean deviations for 
each satellite between HHU and CAS are mainly within 
0.3 ns, and the mean deviations for each satellite 
between HHU and DLR are mainly within 0.2 ns for 
the directly estimated DCB products. This verifies a 
good external consistency for the estimated BDS-3 
DCBs in this study. For the results of stability, the 
monthly mean values of STDs for the estimated BDS-3 
DCBs are all smaller than 0.12 ns, which exhibits good 
stability. The differences of STDs between HHU and 
the other two institutions are within 0.02 ns, which 
illustrates their consistency of stability. The STDs of 
the directly estimated BDS-3 DCBs in this study are 
generally smaller than that of the DCB combination 
products of DLR and CAS. Therefore, the accuracy and 
stability of the directly estimated BDS-3 DCBs exhibit 
better performance than that of DCB combination 
products, which further verifies the necessity to 
estimate the multi-frequency DCBs directly for BDS-3 
satellites. 

Acknowledgment 

This study was supported by The National Natural 
Science Foundation of China (41830110, 42004014), 
Natural Science Foundation of Jiangsu Province 
(BK20200530), Open Project Research Fund of 
Technology Innovation Center for Geological 
Environment Monitoring MNR (2022KFK1212002), 
China Postdoctoral Science Foundation 



 

26 

(2020M671324), Jiangsu Planned Projects for 
Postdoctoral Research Funds (2020Z412). 

References 

[1] M Hernández-Pajares, J.M. Juan, J. Sanz, R. Orus, 
A. Garcia-Rigo, J. Feltens, A. Komjathy, S.C. 
Schaer, A. Krankowski, The IGS VTEC maps: a 
reliable source of ionospheric information since 
1998, J. Geod. 83 (2009) 263–275. 
https://doi.org/10.1007/s00190-008-0266-1. 

[2] O. Montenbruck, A. Hauschild, Code biases in 
multi-GNSS point positioning, ION-ITM-2013, 
2013. 

[3] N. Wang, Y. Yuan, Z. Li, O. Montenbruck, B. 
Tan, Determination of differential code biases with 
multi-GNSS observations, J. Geod. 90 (2016) 209–
228, doi.org/10.1007/s00190-015-0867-4. 

[4] E., Sardón, A., Rius, N., Zarraoa, Estimation of the 
transmitter and receiver differential biases and the 
ionospheric total electron content from Global 
Positioning System observations, Radio Sci. 
(1994), doi.org/10.1029/94RS00449. 

[5] Z. Li, Y. Yuan, L. Hui, J. Ou, X. Huo, Two-step 
method for the determination of the differential 
code biases of COMPASS satellites, J. Geod. 86 
(2012) 1059–1076, doi.org/10.1007/s00190-012-
0565-4. 

[6] F. Guo, X. Zhang, J. Wang, Timing group delay 
and differential code bias corrections for BeiDou 
positioning, J. Geod. 89 (2015) 427–445, 
doi.org/10.1007/s00190-015-0788-2. 

[7] B. Zhang, P. Teunissen, Y. Yuan, H. Zhang, M. Li, 
Joint estimation of vertical total electron content 
(VTEC) and satellite differential code biases 
(SDCBs) using low-cost receivers, J. Geod. 92 
(2018) 401–413, doi.org/10.1007/s00190-017-
1071-5. 

[8] T. Liu, B. Zhang, Y. Yuan, M. Li, Real-Time 
Precise Point Positioning (RTPPP) with raw 
observations and its application in real-time 
regional ionospheric VTEC modeling, J. Geod. 92 
(2018) 1–17, doi.org/10.1007/s00190-018-1118-2. 

[9] A.J. Mannucci, BD  Wilson, D.N. Yuan, C.H. Ho, 
U.J. Lindqwister, T.F. Runge, A global mapping 
technique for GPS-derived ionospheric total 
electron content measurements, Radio Sci. 33 
(1998) 565–582, doi.org/10.1029/97RS02707. 

[10] A. Krankowski, I.I. Shagimuratov, I.I. Ephishov, 
A. Krypiak-Gregorczyk, G. Yakimova, The 
occurrence of the mid-latitude ionospheric trough 
in GPS-TEC measurements, Adv. Space Res. 43 

(2009) 1721–1731, 
doi.org/10.1016/j.asr.2008.05.014. 

[11] O. Montenbruck, A. Hauschild, P. Steigenberger, 
Differential Code Bias Estimation using Multi-
GNSS Observations and Global Ionosphere Maps, 
NAVIGATION. 61 (2014) 191–201. 
doi.org/10.1002/navi.64. 

[12] W. Li, M. Li, C. Shi, R. Fang, W. Bai, GPS and 
BeiDou Differential Code Bias Estimation Using 
Fengyun-3C Satellite Onboard GNSS 
Observations, Remote Sens. 9 (2017) 1239, 
doi.org/10.3390/rs9121239. 

[13] Y. Zhu, S. Tan, L. Feng, X. Cui, X. Jia, Estimation 
of the DCB for the BDS-3 New Signals Based on 
BDGIM Constraints, Adv. Space Res. (2020). 
doi.org/10.1016/j.asr.2020.05.019. 

[14] J. Lin, X. Yue, S. Zhao, Estimation and analysis of 
GPS satellite DCB based on LEO observations, 
GPS Solut. (2016), doi.org/10.1007/s10291-014-
0433-1. 

[15] L. Yuan, S. Jin, M.M. Hoque, Estimation of LEO-
GPS receiver differential code bias based on 
inequality constrained least square and multi-layer 
mapping function, GPS Solut. 24 (2020). 
https://doi.org/10.1007/s10291-020-0970-8. 

[16] L. Yuan, M. Hoque, S. Jin, A new method to 
estimate GPS satellite and receiver differential 
code biases using a network of LEO satellites, 
GPS Solut. 25 (2021) 1–12. 
doi.org/10.1007/s10291-021-01109-y. 

[17] X. Li, T. Ma, W. Xie, K. Zhang, J. Huang, X. Ren, 
FY-3D and FY-3C onboard observations for 
differential code biases estimation, GPS Solut. 23 
(2019), doi.org/10.1007/s10291-019-0850-2. 

[18] X. Li, W. Zhang, K. Zhang, Q. Zhang, Y. Yuan, 
GPS satellite differential code bias estimation with 
current eleven low earth orbit satellites, J. Geod. 
95 (2021), doi.org/10.1007/s00190-021-01536-2. 

[19] R. Jin, S. Jin, G. Feng, M_DCB: Matlab code for 
estimating GNSS satellite and receiver differential 
code biases, Gps Solut. 16 (2012) 541–548. 
doi.org/10.1007/s10291-012-0279-3. 

[20] B. Shu, H. Liu, L. Xu, X. Gong, R. Zhang, 
Analysis of satellite-induced factors affecting the 
accuracy of the BDS satellite differential code 
bias, GPS Solut. (2016) 1–12. 
doi.org/10.1007/s10291-016-0577-2. 

[21] X. Li, W. Xie, J. Huang, T. Ma, X. Zhang, Y. 
Yuan, Estimation and analysis of differential code 
biases for BDS3/BDS2 using iGMAS and MGEX 
observations, J. Geod. 93 (2019) 419–435. 
doi.org/10.1007/s00190-018-1170-y. 



 

27 

[22] Y. Yang, Y. Mao, B. Sun, Basic performance and 
future developments of BeiDou global navigation 
satellite system, Satell. Navig. 1 (2020) 1, 
doi.org/10.1186/s43020-019-0006-0. 

[23] Y. Yang, X.U. Yangyin, L.I. Jinlong, C. Yang, 
Progress and performance evaluation of BeiDou 
global navigation satellite system: Data analysis 
based on BDS-3 demonstration system, Sci. China 
Earth Sci. 61 (2018) 614–624. 
doi.org/10.1007/s11430-017-9186-9. 

[24] J. Sanz, J. Miguel Juan, A. Rovira-Garcia, G. 
González-Casado, GPS differential code biases 
determination: methodology and analysis, GPS 
Solut. 21 (2017) 1549–1561,  
doi.org/10.1007/s10291-017-0634-5. 

Authors 
 Haijun Yuan received the M.S. 
degree from Hohai University, 
Nanjing, China in 2021. He is 
currently a Ph.D candidate at the 
School of Earth Sciences and 
Engineering, Hohai University. His 
current research mainly focuses on 
multi-frequency and multi-

constellation GNSS precise positioning and navigation. 
 Zhuoming Hu received the M.S. 
degree from Hohai University, 
Nanjing, China in 2022. His research 
interests include the GNSS data 
processing, real-time precise 
positioning and navigation. 
  
Xiufeng He received the Ph.D. degree 
from the Hong Kong Polytechnic 
University in 1998. She is currently a 
professor at the School of Earth 
Sciences and Engineering, Hohai 
University, Nanjing, China. Her 
research interests include satellite 
geodesy, deformation monitoring, 

multi-source data fusion, and integrated navigation. 
 Zhetao Zhang received the Ph.D. 
degree from Tongji University, 
Shanghai, China in 2019. He is 
currently an associate professor at the 
School of Earth Sciences and 
Engineering, Hohai University, 
Nanjing, China. His current research 
focuses on the GNSS precise 

positioning and navigation under the conditions 
including canyon environment, low-cost receiver, and 
multi-GNSS situation. 
 



28 
 

Journal of Global Positioning Systems (2022) 

Vol. 18, No. 1: 28-40 

DOI: 10.5081/jgps.18.1.28 

 

A Geometry-based Ambiguity Validation (GBAV) Method for 
GNSS carrier phase observation 

Wu Chen1), 4), Ying Xu, 2), Duojie Weng1),4), Shengyue Ji3) 
1) Department of Land Surveying and Geo-informatics, Hong Kong Polytechnic University 
2) College of Geomatics, Shandong University of Science and Technology, Qingdao, China 
3) School of Geosciences, China University of Petroleum, Qingdao, China 
4) Research Institute for Artificial Intelligence of Things, Hong Kong Polytechnic University 
 Corresponding author: Wu Chen, lswuchen@polyu.edu.hk 

 
Abstract: Integer ambiguity validation is an 
indispensable and critical step in GNSS carrier phase 
positioning for precise and reliable positioning 
applications. The crucial problems associated with any 
ambiguity validation methods are as follows. 1) The 
fixed ambiguity vector can be separated from all other 
ambiguity candidates under certain tests (separability). 
2) The probability of fixing to wrong ambiguity 
combinations (mis-fixing) can be controlled to an 
acceptable level based on different application 
requirements. Traditional ambiguity validation methods, 
such as the R-ratio and the difference tests which use 
one statistical test to control both separability and mis-
fixing rate, are widely used due to easier computation. 
The performances of these methods are generally 
acceptable. However, experiments show that these tests 
with a fixed threshold can cause either a small 
percentage of mis-fixing or overly conservative with 
long observation time. In this paper, we propose a new 
Geometry Based Ambiguity Validation (GBAV) 
method which uses two statistical tests to control 
geometry separability and mis-fixing probability 
separately. The thresholds for both tests can be strictly 
determined based on user requirements to control the 
quality of ambiguity resolution. Three 24-hour GNSS 
(GPS, BDS) datasets (two short baselines and one 
middle-range baseline) are processed using the 
proposed GBAV method, and compared with the 
popular R-ratio method. The results show that by 
giving proper control on the mis-fixing probability 
(<0.01%), there is no mis-fixing case in all three 
datasets.   

Keywords: GNSS, Ambiguity, Carrier Phase 

1. Introduction 

The Global Navigation Satellite Systems (GNSS) 
are satellite navigation systems which provide space-
based positioning, navigation and timing (PNT) 
services in all weather conditions, anywhere on or near 
the Earth (Leick 2004). GNSS provides two common 
types of measurements for positioning, namely pseudo-
range and carrier phase. These measurements enable 
the determination of the ranges between the receiver 
antenna and the satellites. The carrier phase based 
positioning results in more precise range than those 
from pseudo-range, if the carrier phase ambiguity can 
be reliably resolved (Han and Rizos 1999). However, 
an incorrect integer ambiguity solution may cause 
severe biases in the position solution and in any other 
of the real-valued parameters and it is important to 
assess the probability of correct ambiguity estimation 
(Verhagen and Teunissen 2013). Thus, integer 
ambiguity validation is an indispensable and critical 
step in GNSS ambiguity resolution process. Over the 
past years, various ambiguity validation methods have 
been proposed, such as F-ratio test (Frei and Beutler 
1990; Euler and Landau 1992), R-ratio test (Euler and 
Schaffrin 1991; Leick 2004; Teunissen and Verhagen 
2009), difference test (Tiberius and De Jonge 1995), 
projector test (Wang et al. 1998; Han 1997). These 
methods are easy to compute and the performances are 
generally acceptable, if correct critical values are 
selected. However, there are some disadvantages for 
this type of ambiguity validation methods. Taking the 
most popular ratio test as an example, the critical 
values are normally selected empirically, as the statistic 
distributions for the tests are difficult to be established. 
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Therefore it is difficult to evaluate or to compare the 
performances of these empirical tests (Li and Wang 
2012). In addition, the experiments results from 
(Teunissen and Verhagen 2009; Teunissen and 
Verhagen 2004; Teunissen 2013;Verhagen and 
Teunissen 2013) indicated that the traditional use of the 
ratio test with a fixed threshold often results in either 
unacceptably high failure rates or overly conservative. 
For the strong models, the fixed value ratio tests are 
often too conservative, so that the false alarm rates are 
unnecessarily high, while the failure rates are very 
close to zero. For weak models, on the other hand, the 
currently used fixed values are often too low, so that 
the fixed solution is often wrongly accepted, resulting 
in high failure rates. To overcome these problems, 
Verhagen and Teunissen (2006) proposed a model-
driven ratio test with a fixed failure rate. Simulation 
results have shown that it is possible to describe the 
threshold values based only on the number of 
ambiguities and the failure rate. Besides the ambiguity 
validation test mentioned above, Ellipsoidal Integer 
Aperture (EIA) (Teunissen 2003), and Penalized 
Integer Aperture (PIA) (Teunissen 2004) based 
validation methods are dependent on lower bound 
(Teunissen 1998a) or upper bound (Teunissen 2000) of 
ambiguity resolution success rates. The advantage of 
these approaches is that critical values of the statistical 
tests are linked with user controlled fail rates. However, 
the critical values rely on satellite geometry and it is 
difficult to describe them mathematically, particularly 
for multiple epoch observations. Also, the sample size 
is important for these approaches, resulting that longer 
observation time is preferred for reliable solution (Li 
and Wang 2012). To reduce the time required for 
observation and to improve the reliability, Ji et al. 
(2010) proposed to combine R-ratio and EIA tests 
together for ambiguity validation. Through allowing 
slight overlap of pull-in region, the observation time for 
EIA could be significantly reduced. The R-ratio test 
was applied at the same time to discriminate the cases 
in the overlapping regions. Test results showed the 
combined validation method improved the ambiguity 
resolution reliability, and had similar efficiency to the 
R-ratio at the same time. A comprehensive review and 
evaluation of these tests can be found in Verhagen 
( 2004; 2005), Verhagen and Teunissen ( 2006), and Li 
and Wang (2012).  

Geometrically, ambiguity resolution tries to find an 
intersection point of all ambiguities with minimum 
residuals, compared with all the other ambiguity 
combinations in ambiguity space. If there are no errors 
in GNSS measurements, the ambiguities can be fixed to 
integers when there is only one intersection point. For a 
given GNSS datasets, if there were two intersection 
points, no validation method can distinguish them. On 

the other hand, the measurement errors may shift the 
correct intersection point significantly. It will cause the 
ambiguity resolution algorithms fixing to wrong 
ambiguity. As mentioned above, ratio tests were 
applied popularly and empirically. They use one 
statistical test to control both problems. As a result, 
these tests with a fixed threshold may cause some 
ambiguity mis-fixing casesor overly conservative with 
long observation time. In this paper, we proposed a 
new Geometry Based Ambiguity Validation (GBAV) 
method to separate the validation test into statistical 
tests, including the spatial separability and mis-fixing 
rate. Based on the statistical distributions of the two 
tests, we are able to determine the thresholds based on 
user requirements to control the spatial separability and 
mis-fixing rate separately. With this new method, we 
can efficiently control the mis-fixing probability to 
ensure the quality of ambiguity resolution.  

In section 2, the concept spatial separability and 
mis-fixing condition are introduced and their associated 
probabilities are given. The proposed Geometry Based 
Ambiguity Validation (GBAV) method is summarized 
in section 3. Numerical tests and results with three 
GNSS 24-hour datasets are given in section 4. The 
discussions and conclusions are given in section 5. 

2. Spatial Separability and Mis-fixing Condition 
for Ambiguity Validation 

The general form of linear observation equation on 
GNSS carrier phase observation can be expressed as 
(Parkinson et al. 1996; Leick 2004; Hofmann-
Wellenhof et al. 1993): 
𝐴𝑋 + 𝐵𝑁 + ε = 𝐿                                                       (1) 
where 𝐿  denotes the double difference observation 
vector, 𝑁  is double difference carrier phase integer 
ambiguity vector (𝑁 ∈ 𝑍𝑛), 𝑋 is the vector of the other 
unknown parameters (including position coordinates), ε 
is the random errors, and the matrices 𝐴 and 𝐵 are the 
corresponding design matrices. 

The solution of Eq. (1) can be obtained by 
minimizing Eq. (2) (Verhagen 2004): 

min ||𝐿 − 𝐵𝑁 − 𝐴𝑋||𝑄𝐿
2 ,    𝑁 ∈ 𝑍𝑛,𝑋 ∈ 𝑅𝑛               (2) 

where ||∗||𝑄𝐿
2 = (∗)𝑇𝑄𝐿−1(∗), and 𝑄𝐿  is the variance-

covariance matrix of observation vector 𝐿. 
In general, the ambiguity fix solution can be divided 

into three steps (Teunissen 1995). In the first step, the 
integer constraints on the ambiguities are simply 
ignored. The unconstrained least-squares solution is 
referred to as the float solution of 𝑁� , 𝑋� . The 
corresponding variance-covariance (VC) matrix is as 
following, 
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�𝑁�
𝑋�
� ,    �

𝑄𝑁� 𝑄𝑁�𝑋�
𝑄𝑋�𝑁� 𝑄𝑋�

�                                                    (3) 

In the second step, the integer ambiguity estimation 
N�  is computed from the ‘float’ ambiguity, subject to 
min |�𝑁� − N��|𝑄𝑁�

2 . Integer rounding, integer 
bootstrapping and integer least-squares are different 
methods for obtaining the integer solution. Integer 
least-square (ILS) is optimal, as it maximizes the 
probability of correct integer estimation (Teunissen 
1999). In contrast to rounding and bootstrapping, an 
integer search is needed to compute the ILS solution. 
This can be efficiently done with the LAMBDA 
method (Teunissen 1995b). Finally, fixed solution is 
obtained by: 

𝑋� = 𝑋� − 𝑄𝑋�𝑁�𝑄𝑁�
−1(𝑁� − N� )                                       (4) 

For relative positioning, if the double difference 
ambiguity vector is truly known as 𝑁0 , the double 
difference carrier phase observation equation can be 
written as,  
𝐴𝑋0 = 𝐿0 + 𝜆𝑁0 + 𝑒 with a weight matrix 𝑃             (5) 
where 𝐴 is the design matrix, 𝑋0 is the receiver position 
vector,  𝐿0  is the double difference carrier phase 
measurement vector without noise, 𝜆 is the wavelength 
of carrier phase, and 𝑒 is the true error vector of carrier 
phase measurement. The other errors, such as 
tropospheric delay and ionospheric delay are not 
considered here as the double difference process 
significantly reduces their effects on short baselines. 
For Long baselines, we can use GNSS measurements to 
estimate tropospheric and ionospheric delays, together 
with receiver position and clock error parameters.  

Assuming 𝑁0  is known, the residual vector 𝑉0  and 
the weighted sum of squared residuals 𝑍0 of Eq. (5) can 
be expressed as Eqs. (6) and (7), when the least squares 
estimation method is used to estimate position vector 
𝑋0. 

𝑉0 = (𝐼 − 𝐻)𝑒                                                     (6) 

𝑍0 = 𝑉0𝑇𝑃𝑉0 = 𝑒𝑇(𝐼 − 𝐻)𝑃(𝐼 − 𝐻)𝑒                 (7) 

where 

 𝐻 = 𝐴(𝐴𝑇𝑃𝐴)−1𝐴𝑇𝑃                                (8) 

The ambiguity validation problem can be generally 
described as follows. 
Give a group of ambiguity candidates 
(𝑁1,𝑁2,𝑁3, … … .𝑁𝑚), and 𝑁0𝜖(𝑁1,𝑁2,𝑁3, … … .𝑁𝑚), 
 ∀𝑁𝑖𝜖(𝑁1,𝑁2,𝑁3, … … .𝑁𝑚), check if 𝑁0 = 𝑁𝑖 for all 
𝑖 = 1, … … ,𝑚. 
If 𝑁𝑖  is a selected candidate,  

𝐴𝑋𝑖 = 𝐿0 + 𝜆𝑁𝑖 + 𝑒= 𝐿0 + 𝜆𝑁0 + 𝜆Δ𝑁𝑖 + 𝑒            (9) 

where 

Δ𝑁𝑖 = 𝑁𝑖 − 𝑁0                                          (10) 

The total error in Eq. (9) is 

Δ = 𝜆Δ𝑁𝑖 + 𝑒                                                       (11) 

The residual vector of Eq. (9) is  

𝑉𝑖 = (𝐼 − 𝐻)Δ = 𝜆(𝐼 − 𝐻)Δ𝑁𝑖 + (𝐼 − 𝐻)𝑒  (12) 

The weighted sum of squared residuals 𝑍𝑖 is 

𝑍𝑖 = 𝑉𝑖𝑇𝑃𝑉𝑖 = 𝜆2Δ𝑁𝑖𝑇(𝐼 − 𝐻)𝑃(𝐼 − 𝐻)Δ𝑁𝑖 +
𝑒𝑇(𝐼 − 𝐻)𝑃(𝐼 − 𝐻)𝑒 + 2𝜆Δ𝑁𝑖𝑇(𝐼 − 𝐻)𝑃(𝐼 − 𝐻)e (13) 

On the other hand, differencing Eq. (5) and Eq. (9), 
we can have:  

𝐴Δ𝑋𝑖 = 𝜆Δ𝑁𝑖                                                        (14) 

where Δ𝑋𝑖 = 𝑋𝑖 − 𝑋0 is the position shift due to the 
wrong ambiguity. 

There is no measurement error in Eq. (14), its 
residual only reflects the coordinate difference caused 
by the Δ𝑁𝑖 . The residual and the weighted sum of 
squared residuals of Eq. (14) are,   

𝑉Δ𝑁𝑖 = 𝜆(𝐼 − 𝐻)Δ𝑁𝑖                                            (15) 

and  

𝑉Δ𝑁𝑖𝑇 𝑃𝑉Δ𝑁𝑖 = 𝜆2Δ𝑁𝑖𝑇(𝐼 − 𝐻)𝑃(𝐼 − 𝐻)Δ𝑁𝑖               (16) 

In another word, the residuals of Eq. (14) only 
reflect whether 𝑁0  and 𝑁𝑖  can be separated 
geometrically or not. For instance, 𝑁0 and 𝑁𝑖 cannot be 
separable if 𝑉Δ𝑁𝑖 = 0. Furthermore, the weighted sum 
of squared residuals (Eq. 16) can also be used to 
describe the degree whether 𝑁0 and 𝑁𝑖 can be separated. 
When 𝑉Δ𝑁𝑖𝑇 𝑃𝑉Δ𝑁𝑖 is too small compared to 𝑉0𝑇𝑃𝑉0 ; 𝑁0 
and 𝑁𝑖 cannot be separated geometrically. Conversely, 
it is possible to separate 𝑁0 from 𝑁𝑖 while 𝑉Δ𝑁𝑖𝑇 𝑃VΔ𝑁𝑖 is 
relatively larger than the sum of the squares of noise 
𝑉0𝑇𝑃𝑉0. 

Inserting Eqs. (6), (7), (15) and (16) into (13), 

𝑍𝑖 = 𝑉𝑖𝑇𝑃𝑉𝑖 = 𝑉Δ𝑁𝑖𝑇 𝑃𝑉Δ𝑁𝑖 + 𝑉0𝑇𝑃𝑉0 + 2𝑉Δ𝑁𝑖𝑇 𝑃𝑉0  (17) 

The weighted sum of squared residuals for Eq. (9) 
consists of three terms. The first term is only 
determined by the difference of selected ambiguity 
vector and the true ambiguity vector. The second term 
is only related to the true error e, and the third term is 
affected by the projection of the true error to the 
direction of residual vector 𝑉ΔN𝑖. 

If the ambiguity candidates (𝑁1,𝑁2,𝑁3, … … .𝑁𝑚) 
of Eq. (9) is arranged based on the size of weighted 
sum of squared residuals (Eq. (13)), from smallest to 
the largest, the ambiguity 𝑁1 is an optimal solution of 
Eq. (9). Thus the ambiguity validation problem can be 
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described as whether 𝑁1 is the true ambiguity vector 𝑁0 
or not, which can be divided into two cases: 1) 𝑁0=𝑁1, 
and 2) 𝑁0=𝑁𝑖  (𝑖 ≠ 1).  

Case 1: 𝑁0=𝑁1, 
Let us consider case 1 first, when 𝑁1  is the true 

ambiguity vector, or, 

𝑁0 = 𝑁1                                                (18) 

and thus,  

𝑉1 = (𝐼 − 𝐻)𝑒                                              (19) 

Select 𝑁𝑖  as a possible candidate ( 𝑖 ≠ 1 ), the 
difference of the sums of residuals between 𝑁1 and 𝑁𝑖 
should be, 

Δ𝑍1𝑖 = 𝑍𝑖 − 𝑍1 = 𝑉Δ𝑁1𝑖𝑇 𝑃𝑉Δ𝑁1𝑖 + 2𝑉Δ𝑁1𝑖𝑇 𝑃(𝐼 − 𝐻)𝑒 =
𝑉Δ𝑁1𝑖𝑇 𝑃𝑉Δ𝑁1𝑖 + 2𝑉Δ𝑁1𝑖𝑇 𝑃𝑉1 > 0                     (20) 

where Δ𝑁1𝑖 = 𝑁𝑖 − 𝑁1 
In Eq. (20), the first term is determined only by the 

geometry of satellites and ambiguity difference Δ𝑁1𝑖 . 
As mentioned above, it can be used to describe whether 
𝑁0 (𝑁1 in this case) and 𝑁𝑖 can be separated compared 
to 𝑉0𝑇𝑃𝑉0 (𝑉1𝑇𝑃𝑉1in this case). Now we can define the 
separability index of 𝑁𝑖 and 𝑁1 as: 

𝑆1𝑖 = 𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖
𝑉1𝑇𝑃𝑉1

                                                  (21) 

When 𝑆1𝑖  is relatively large, 𝑁1  and 𝑁𝑖  are 
geometrically separable compared with a given noise 
level 𝑉1𝑇𝑃𝑉1 . Thus, the geometrical separability 
condition of ambiguity resolution is: 

𝑆1𝑖 = 𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖
𝑉1𝑇𝑃𝑉1

> 𝑘1                                              (22) 

The next question is how to determine k1. Since the 
distribution of the GNSS satellites can be considered as 
random, 𝑉Δ𝑁1𝑖 should obey the normal distribution just 
like the V1 (Teunissen 1998b). Although we are not 
able to prove this hypothesis at moment, simulation 
tests are carried out to test if the distribution of 𝑉Δ𝑁1𝑖 is 
Gaussian. In the simulation, we firstly calculate three 
data sets of 𝑉Δ𝑁1𝑖  and consider them as the samples 
using the observation collected for the experiments (see 
section 4) in this study. The numbers of the samples are 
34648. The probability density of one set of 𝑉Δ𝑁1𝑖  is 
shown in Fig 1 (the blue line). The mathematical 
expectation (µ) and standard deviation (σ) of 𝑉Δ𝑁1𝑖  is 
0.000 and 0.025 respectively. The black line shows the 
normal probability density function with the same µ 
and σ. As shown in Fig 1, these two lines are very 
closer to each other. Furthermore, we apply the Jarque-
Bera test in Matlab, h = jbtest(x), which returns a test 
decision for the null hypothesis that the data in 
vector x comes from a normal distribution. The 
alternative hypothesis is that it does not come from 
such a distribution. The result h is 1 if the test rejects 
the null hypothesis at the 5% significance level, 
and 0 otherwise. Test shows that all the three samples 
come from a normal distribution. As the molecular and 
denominator of Eqs. (21) is independent, 𝑆1𝑖 obeys F-
distribution,  𝑆1𝑖~𝐹(𝑑,𝑑), 𝑑 is the degree of freedom. 
Thus, by giving a significant level, 𝑘1  is uniquely 
determined by the distribution of 𝑆1𝑖~𝐹(𝑑,𝑑).  

 

 
Fig 1  The distribution of  𝑉Δ𝑁1𝑖 (sample one, blue line), The Normal Distribution (black line) 

 The second term in Eq. (20) is determined by the 
size of residual of the true error 𝑒. From Eq. (20), we 
can get 
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2𝑉Δ𝑁1𝑖
𝑇 𝑃(𝐼−𝐻)𝑒

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

= 2𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉0

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

> −1                            (23) 

We define 𝑀𝑖 = 𝑚 ∙ 𝑉𝑖 ,𝑚 = 2𝑉Δ𝑁1𝑖
𝑇 𝑃

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

, and 

𝑀0 = 2𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉0

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

= 2𝑉Δ𝑁1𝑖
𝑇 𝑃(𝐼−𝐻)𝑒

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

.  

In case 1, 𝑉1 = (𝐼 − 𝐻)𝑒, so 

 𝑀1 = 𝑀0 = 2𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉1

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

= 2𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉0

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉Δ𝑁1𝑖

> −1           (24) 

If the measurement error vector e obeys a zero mean 
normal distribution, 𝑀0 also obeys normal distribution, 
as it is a linear combination of error vector e. 

Case 2: 𝑁0=𝑁𝑖  (𝑖 ≠ 1). 
Let us consider the second case now, when 𝑁𝑖 

(𝑖 ≠ 1) is the true ambiguity vector (𝑁0 = 𝑁𝑖 ). If 𝑁1 is 
selected as an ambiguity solution in this case (with the 
smallest sum of residuals), an ambiguity mis-fixing 
happens. 

In this case, 

𝑉𝑖 = (𝐼 − 𝐻)𝑒                                                       (25) 

𝑉1 = 𝜆(𝐼 − 𝐻)Δ𝑁𝑖1 + 𝑉𝑖 = −𝑉ΔN1𝑖 + 𝑉𝑖              (26) 

Δ𝑍1𝑖 = 𝑍𝑖 − 𝑍1 = −𝑉Δ𝑁𝑖1𝑇 𝑃𝑉ΔN𝑖1 − 2𝑉Δ𝑁𝑖1𝑇 𝑃(𝐼 −
𝐻)𝑒 = −𝑉Δ𝑁1𝑖𝑇 𝑃𝑉ΔN1𝑖 + 2𝑉Δ𝑁1𝑖𝑇 𝑃(𝐼 − 𝐻)𝑒 > 0 (27) 

where 

 Δ𝑁𝑖1 = 𝑁1 − 𝑁𝑖 = −Δ𝑁1𝑖                             (28) 

Thus in this case, 

𝑀0 = 2𝑉Δ𝑁1𝑖
𝑇 𝑃(𝐼−𝐻)𝑒

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉ΔN1𝑖

> 1                                         (29) 

and,  

𝑀1 =
2𝑉Δ𝑁1𝑖𝑇 𝑃𝑉1
𝑉Δ𝑁1𝑖𝑇 𝑃𝑉Δ𝑁1𝑖

=
2𝑉Δ𝑁1𝑖𝑇 𝑃(−𝑉ΔN1𝑖 + 𝑉𝑖)

𝑉Δ𝑁1𝑖𝑇 𝑃𝑉Δ𝑁1𝑖
 

= −2 + 𝑀0 > −1                                                    (30) 
Comparing Eqs. (24) and (29), the reason for fixing 

to wrong ambiguity is clearly illustrated. When the 
projection of the residual vector of the true error e to 
the direction of  𝑉Δ𝑁1𝑖  is too large which causes 
𝑀0 > 1, a mis-fixing happens.  

Now let us compare Eqs. (24) and (30). 𝑀1 obeys a 
normal distribution for both cases. In case 1 when 
𝑁0 =𝑁1 , 𝑀1  (𝑀1 = 𝑀0 ) obeys a zero mean normal 
distribution (representing a correction ambiguity 
vector). In case 2, 𝑀1 obeys a normal distributions with 
a mean of -2 (representing an incorrect ambiguity 
vector), as shown in Fig. 2. With given 𝑀1 calculated, a 
threshold −1 + 𝑘2  can be set up to decide if 𝑀1 
belongs to case 1 or case 2. When 

𝑀1 > −1 + 𝑘2                                                         (31) 

we consider 𝑀1  belongs to case 1. Otherwise, we 
consider 𝑀1  belongs to case 2. Thus  𝑀1   can be 
considered as an index for ambiguity mis-fixing 
judgement.  

For a given 𝑘2, the success probability 𝑃𝑠, the mis-
fixing probability 𝑃𝑚, and undecided probability 𝑃𝑢 can 
be calculated using Eq. (32), where 𝑃𝑀1  is the 
probability distribution function of 𝑀1. 

�
𝑃𝑠 = ∫ 𝑃𝑀1𝑑𝑥

∞
−1+𝑘2 ,                               𝑀1 =  𝑀0

𝑃𝑚 = ∫ 𝑃𝑀1𝑑𝑥
∞
−1+𝑘2 ,                  𝑀1 = −2 + 𝑀0  

𝑃𝑢 = 1 − 𝑃𝑠 − 𝑃𝑚                                                   
    (32) 

  

 
Fig 2 The distribution of 𝑀1 in case 1 and case 2 
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As shown in Eq. (32), by giving the mis-fixing 
probability 𝑃𝑚, the threshold 𝑘2 is uniquely determined 
with the given variance of  𝑀0. Assuming the true error 
𝑒 obeys a normal distribution, 𝑀0 also obeys a normal 
distribution. The variance of 𝑀0 can be estimated as,  

𝜎𝑀0
2 = �2𝑉Δ𝑁1𝑖

𝑇 𝑃(𝐼−𝐻)
𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉ΔN1𝑖

� (𝑒 ∙ 𝑒𝑇) �2𝑉Δ𝑁1𝑖
𝑇 𝑃(𝐼−𝐻)

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉ΔN1𝑖

�
𝑇

          (33) 

Since 𝑒 ∙ 𝑒𝑇 = 𝜎02𝑃−1 

𝜎𝑀0
2 = 4𝜎02𝑉Δ𝑁1𝑖

𝑇 𝑃(𝐼−𝐻)𝑃−1(𝐼−𝐻)𝑇𝑃𝑉ΔN1𝑖
�𝑉Δ𝑁1𝑖

𝑇 𝑃𝑉ΔN1𝑖�
2 =

4𝜎02𝑉Δ𝑁1𝑖
𝑇 𝑃(𝐼−𝐻)𝑉ΔN1𝑖

�𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉ΔN1𝑖�

2 = 4𝜎02

𝑉Δ𝑁1𝑖
𝑇 𝑃𝑉ΔN1𝑖

                              (34) 

Let 𝜎02 ≈
𝑉1𝑇𝑃𝑉1
𝑑

,  where 𝑑 is the degree of freedom of 
Eq. (9). Insert the equation above and Eq. (21) into (34), 

𝜎𝑀0
2 ≈ 4

𝑑•𝑆1𝑖
                                                               (35) 

According to Eq. (35), giving a 𝑆1𝑖, we can obtain the 
variance of  𝑀0  ( 𝜎𝑀0

2 ). With a given mis-fixing 
probability 𝑃𝑚  and 𝜎𝑀0

2  , the threshold 𝑘2  can be 
uniquely determined. 

3. A Geometry Based Ambiguity Validation 
(GBAV) method 

Based on the analysis in section 2, we propose a 
new ambiguity resolution method using both the 
geometrical separability condition (Eq. (22)) and the 
mis-fixing condition (Eq. (31)). Using both conditions, 
it enables to control the degree of spatial separability of 
the ambiguity candidates, and to control the probability 
of mis-fixing rates at the same time. 

The ambiguity validation procedure based on the 
proposed GBAV method can be summarized as: 
1) To avoid the big effect on the ambiguity validation 

of the pseudo-range noise, the GBAV method 
proposed in this paper is only based on the carrier 
phase observation. Theoretically, integer hypotheses 
should be followed from an ILS estimation based on 
Eq. (5). However, this equation is rank deficient 
with one epoch observation and thus long times 
observation will be required to get the float 
solutions and the ambiguity candidates. As a result, 
in this study, we calculate the “float” solution for 
the ambiguity vector with both pseudo-range and 
carrier phase observations, then determine the 
ambiguity candidate search space using the 
LAMBDA method. After the search range of 

ambiguity is determined, only carrier phase 
measurements will be used.  

2) Check the data quality by examining residual 𝑉1 
with various receiver autonomous integrity 
monitoring (RAIM) fault detection and exclusion 
(FDE) methods (Feng et al. 2009) and remove 
measurements if a large error is detected. In this 
way, some outliers can be detected and removed 
from observation. 
Repeat 1) and 2) until no more errors can be found.  

3) Confirm if the ambiguity vector associates with the 
smallest sum of residuals is the correct ambiguity, 
by checking ambiguity vectors with minimum and 
second minimum sum of residuals satisfying the 
separability condition (Eq. (22)), mis-fixing 
condition (Eq. (31)) or not,  

4) If 3) are not satisfied, add one more epoch and then 
repeat 1) and 4). 

5) When both separability condition and mis-fixing 
condition are satisfied, we fix the ambiguity 
𝑁1 = 𝑁0. 

For most conventional ambiguity validation 
methods (i.e. the ratio test), only one threshold is used. 
In GBAV algorithm, we applied two thresholds to 
control spatial separability and mis-fixing probability 
separately. The crucial issues for GBAV is the 
selection of the threshold 𝑘1 and 𝑘2.  

For separability index 𝑆1𝑖, if we set the significant 
level 𝛼 = 0.05, we can estimate the threshold 𝑘1 with 
the degree of freedom d (or the number of observations 
𝑣 ) using a F-distribution. Fig 3 gives the threshold 
values of 𝑘1 with different number of observation from 
5 to 31. From Fig 3 we can see the thresholds decrease 
from 5.05 to 3.79 sharply when the number of 
observation changes from 5 to 7. When the number of 
observation is larger than 24, the value of 𝐹  varied 
slowly, which is always below 2.0. Thus we simply set 
a table for 𝑘1   thresholds with different numbers of 
observations (Table 1). To balance the reliability and 
efficiency, the value of 𝑘1 we selected are all slightly 
higher than that of the corresponding values from the 𝐹 
distribution. 

Table 1 𝑘1 thresholds applied in this paper under 
the significant value of 0.05  

𝒗 5 6 7 8~9 10~13 14~23 >24 

𝒌𝟏 5.5 4.5 4.0 3.5 3.0 2.5 2.0 
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Figure 3 The thresholds of k1 with different number measurements under the significant value of 0.05  

To determine the thresholds of 𝑘2 , we need to 
estimate the variance of 𝑀0 (Eq. (35)) first. We use 𝑘1 
(low bound of 𝑆1𝑖) to replace 𝑆1𝑖 in Eq. (35) and 𝜎𝑀2  for 
different number of observation are given in Table 2. 
From Table 2, we can find that 𝜎𝑀2  decrease steadily 
from 0.40 to 0.08 when number of observation increase 
from 5 to 31. Using the largest 𝜎𝑀2  which is 0.40 as an 
example, we can determine the threshold 𝑘2  with 
different mis-fixing probability. Table 3 illustrates the 
thresholds of 𝑘2, the probabilities of the success and 
undecided cases when 𝑘2 is equal to 0 or the mis-fixing 
probability is set to be 0.1% and 0.01%. As shown in 
Table 3, the estimation of 𝑘2  increases considerably 
from 0.00 to 0.49 when the mis-fixing rate declines. At 
the same time, the success rate decreases sharply from 
99.38% to 90.00%, which means more time will be 
required to realize the ambiguity resolution when the 
mis-fixing probability reduces. It should be noted that 
the values provided here give the upper limits of mis-
fixing probability. If the same thresholds are used, with 
lower value of 𝜎𝑀2 , the mis-fixing probability will be 
less than that listed in Table 3. 

Since the R-ratio test is very popular and widely 
used, we compare the GBAV method with it. The R-
ratio test is defined as:  

𝑅𝑎𝑡𝑖𝑜 = 𝑉2
𝑇𝑃𝑉2

𝑉1𝑇𝑃𝑉1
> 𝑘                                                   (36) 

Substituting Eqs. (22) and (24) into (36) yields 

𝑅𝑎𝑡𝑖𝑜 = 1 + 𝑆12 + 𝑆12𝑀1                             (37) 

Table 2 𝜎𝑀2  for different numbers of observation 
𝑣 𝜎𝑀2  𝑣 𝜎𝑀2  𝑣 𝜎𝑀2  

5 0.40  14 0.15  23 0.10  
6 0.31  15 0.14  24 0.10  
7 0.26  16 0.13  25 0.09  
8 0.23  17 0.13  26 0.09  
9 0.21  18 0.12  27 0.09  

10 0.19  19 0.12  28 0.09  
11 0.18  20 0.11  29 0.08  
12 0.17  21 0.11  30 0.08  
13 0.16  22 0.10  31 0.08  

It can be seen from Eq. (37) that the ratio test is a 
mixed parameter of spatial separation and mis-fixing 
index. By giving the thresholds of 𝑘1 and 𝑘2, we can 
obtain ratio test threshold k, which is a function of 
number of observation and mis-fixing probability. If we 
select 𝑘1  in Table 1, and 𝑘2 =0.0, 0.24 and 0.49 
respectively, the thresholds for the R-ratio test varies 
from 1.00 to 3.20 for the number of observation from 5 
to 24 (Table 4). 
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Table 3 The threshold of 𝑘2, success and undecided 
probabilities with 𝜎𝑀2 = 0.4 

𝝈𝑴 𝒌𝟐 -1+𝒌𝟐 Success Undecided Mis-fixing 

0.4 0.00 -1.00 99.38%  0.00% 0.62% 
0.4 0.24 -0.76 97.19%  2.71% 0.10% 
0.4 0.49 -0.51 90.00% 9.99% 0.01% 

Table 4 The relationship between the thresholds for 
V-Ratio and GBAV test 

𝒌𝟐 5 6 7 8~9 10~13 14~23 >24 

0.00 1.00  1.00  1.00  1.00  1.00  1.00  1.00 

0.24 2.32 2.08 1.96 1.84 1.72 1.60 1.48 

0.49 3.20  2.80  2.60  2.40  2.20  2.00  1.80 

Even we can use the variable thresholds of the ratio 
test for ambiguity validation, the GBAV method will 
be better that the ratio test. For example, in the case 
when 𝑆1𝑖  is too small but 𝑀1 is sufficiently large, the 
result will pass the ratio test. However, in this case, the 
ambiguity vectors are not spatially separable. Also, 
when is 𝑆1𝑖 is very large, but 𝑀1 is too small, the result 
will also pass the ratio test. But a mis-fixing case would 
be found with the GBAV method.  

4. Numerical Examples  

In this section, to evaluate the performance of the 
GBAV method proposed in this paper, three GNSS 
data sets with 24-hour observations are used for 
ambiguity resolutions.  According to analyze in Ji and 
Xu (Ji et al.), we found that a better ambiguity 
resolution performance will be adopted when the cut 
off angle of BDS GEOs is set to 20°, and the cut off 
angle of IGSOs, MEOs is set to 15°. As a consequence, 
we set the cutoff angle for GEOs to be 20°, and the 
IGSOs, MEOs, as well as the GPS satellites to be 15°. 
In addition, the full ambiguity resolution rather than the 
partial ambiguity resolution is applied. Three ambiguity 
validation methods are used for ambiguity resolution, 
namely constant threshold for the ratio test, variable 
threshold for the ratio test (Eq. (37)), and the GBAV 
method. The quality of an ambiguity validation method 
is described by two factors, i.e. time required for 
ambiguity resolution and ambiguity mix-fixing rate. 
The first factor indicates the efficiency and the second 
factor represents the reliability of the validation method.  

4.1 Data and Data processing methods 

Two short baselines with GPS observation (GODE 
– GODN, 40 m baseline) and (HARB – HRAO, 1.24 
km baseline) from the International GNSS Services 
(IGS) network, and a middle-range baseline (GS01 – 

GS02, 30.6 km in Beijing, China) with GPS/BDS 
observation were used for the evaluation of the GBAV 
method. For all stations, dual frequency geodetic 
receivers were installed at the stations. And the 
observation periods for all baselines are 24 hours. For 
the two short baselines, the update rate is 30s and for 
the middle range baseline the update rate is 1s.  

To evaluate the performance of the proposed 
ambiguity validation method, we started from every 
epoch in the data sets until all ambiguities were fixed to 
their integers. In data processing, the ambiguity-fix rate 
(AFR) (Ji et al. 2010) is used to quantify the efficiency 
performance of ambiguity resolution with the following 
definition, 

𝐴𝐹𝑅 = Number of epoch with ambiguity fixed to integer
Total number of epochs observed in the data sets

  (38) 

Also, all mis-fixing cases were recorded and 
quantified as the percentage of total observed epochs 
during the 24 hour observation period. In the data 
processing, we did not estimate 𝜎𝑀2  every epoch. 
Instead, we used the largest value of 0.4 for all 
processing. To set a baseline for comparison, we used 
the fixed R-ratio of 1, 1.5, 2.0, 2.5, 3.0, and 3.5. Then 
for the GBAV method, the thresholds of 𝑘1, and 𝑘2, 
are adopted from Tables 1 and 3. For the variable R-
ratio test (Eq. (37)), the thresholds are given in Table 4. 
It is worth mentioning that, the observation of both 
GPS and Beidou for all the baselines is double-
frequency signals. So the number of the observation in 
Tables 1 and 4 is generally larger than 8.   

4.2 Test results  

Baseline 1 (GODE – GODN, 40m) 
This is a very short baseline and most of the errors 

can be effectively cancelled by double differencing. 
Table 5 gives the ambiguity resolution results with the 
fixing threshold ratio test. As shown in the table, when 
the ratio is large than 3.0, there is no mis-fixing case, 
and the time required for all epochs ambiguity fixed are 
5-8 epochs or 3-4 min. More than 97% of epochs the 
ambiguities can be fixed within one epoch. On the 
other hand, with the ratio threshold less than 2.5, there 
are some mis-fixing cases.    

The results with variable ratio test and the GBAV 
method are given in Table 6. When 𝑘2 = 0.00 , the 
threshold of R-ratio should be 1.0, and only 1 epoch is 
needed to fix the ambiguities, which is more efficient 
than that of the GBAV test. However, the mis-fixing 
rate (0.14%) is significant higher than that of the 
GBAV method (0.07%). Since there are 2880 epochs, 4 
of them are mis-fixed shown as Table 7. The values of 
S and M at the first epoch when the Ratio suffer from a 
mis-fixing are shown in Table 8. It is shown that the 
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values of S in the first, third and last cases are smaller 
than K1, which means the ambiguity candidates of 
these cases cannot be spatial separated. When the 
GBAV test is involved, 𝑘2 = 0.00, the ambiguities of 
the last two cases in Table 8 are fixed to the right ones. 
When 𝑘2 =0.24, the first two cases in Table 8 also 
achieve the ambiguity resolution correctly, since the M 
controls the mis-fixing probability. On the other hand, 
there are 2 epochs (0.07%) of mis-fixing cases using 
the variable ratio test when 𝑘2 =0.24 and 0.49 
respectively. Take 𝑘2 =0.49 for instance, the time 
required for all epoch’s ambiguity fixed are 5 to 8 
epochs or 2.5 to 4.5 min with the GBAV method. And 
the variable ratio only need 5 epochs. If we just check 
one epoch data, the variable ratio method can fix 99% 
of epochs while the GBAV method can fix around 91% 
when 𝑘2 =0.49. Thus, the ratio methods are more 
efficient than the GBAV method on ambiguity 
resolution.  

Table 5 AFR and Mis-fixing rate of R-ratio test with 
certain values of threshold (GODE – GODN, 
40m) 

Tf Fix R-ratio AFR (%) 
𝑘
= 1 

𝑘
= 1.5 

𝑘
= 2.0 

𝑘
= 2.5 

𝑘
= 3.0 

𝑘
= 3.5 

1 100.00 99.69 99.24 98.72 97.53 96.56 
2  100.00 99.90 99.76 99.41 98.89 
3   99.93 99.90 99.65 99.31 
4   100.00 99.97 99.69 99.44 
5    100.00 99.72 99.48 
>5 & ≤ 8    100.00 100.00 

Mis-fixing rate(%) 
 0.14 0.14 0.07 0.03 0.00 0.00 
Note: Tf stands for Time to fix (epoch) 

Table 6 AFR and mis-fixing rate of GBAV and 
variable R-ratio test with varying threshold 
(GODE – GODN, 40m) 

Tf  
Variable R-ratio AFR 
(%) GBAV AFR (%) 

 
𝑘2
= 0.00 

𝑘2
= 0.24 

𝑘2
= 0.49 

𝑘2
= 0.00 

𝑘2
= 0.24 

𝑘2
= 0.49 

1 100.00 99.51 99.24 99.48 98.23 91.74 

2 
 

99.93 99.86 99.76 99.62 97.67 

3 
 

99.97 99.93 100.00 99.72 98.26 

4 
 

100.00 99.97 
 

99.93 99.10 

5 
  

  100.00 
 

100.00 99.38 

>5 & ≤ 8     100.00 

Mis-fixing rate(%) 
 0.14 0.10 0.07 0.07 0.00 0.00 

Table 7 Mis-fixing cases for ratio test (GODE – 
GODN, 40m) 

GPS Time 𝑘2 = 0.00 
/ 1epoch 

𝑘2
= 0.24 

𝑘2 = 0.49 

h m s K ratio K ratio K ratio 
13 25 30 1.00  1.502 1.72  2.382 2.20  3.780  

13 29 30 1.00  1.533 1.84  2.163 2.40  5.620  

13 55 30 1.00  3.654 1.84  3.654 2.40  3.654  

17 25 00 1.00  2.786 1.84  2.786 2.40  2.786  

 
 
 
 
 

Table 8 Mis-fixing cases for GBAV test (GODE – GODN, 40m) 
GPS Time K1 1 epoch 𝑘2 = 0.00 𝑘2 = 0.24 

h m s Ratio S M S M S M 
13 25 30 3.0 1.502  2.488  -0.798  5.603  -0.863  9.068  -0.119  
13 29 30 3.5 1.533  7.966  -0.933  7.966  -0.933  4.484  -0.616  
13 55 30 3.5 3.654  2.904  -0.086  9.297  0.086  9.297  0.086  
17 25 00 3.5 2.786  2.480  -0.280  7.307  -0.380  7.307  -0.380  

 
Baseline 2 (HARB – HRAO, 1.2 km). 
Again, we applied the fix ratio test first and the 

results are given in Table 9. In this example, for the fix 
ratio method, when the ratio is larger than 3.5, there are 
no mis-fixing cases. The time required for all epochs 
fixed are less than 25 epochs or 12.5 min.  

When we use the GBAV method with 𝑘2 =0.49, 
there are no mis-fixing case and the time required for 
all epochs fixed are less than 15 epochs or 7.5 min 
(Table 10). The variable ratio test can fix ambiguity for 
all epochs during the same period, but there are 3 
epochs of mis-fixing (0.10%). On the other hand, for 
the efficiency of ambiguity fixing, variable ratio test is 
slightly better.  
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Baseline 3 (GS01 – GS02, 30.6 km). 
As this dataset include both GPS and Chinese 

BeiDou data, we consider two cases here: GPS only 
and GPS/BDS data. When we only use GPS data, the 
results are summarized in Tables 11 and 12. With the 
fix ratio test, the threshold with no mis-fixing cases is 
3.5, and 15 min to resolve ambiguities for all epochs. 
When 𝑘2=0.24 and 0.49, the GBAV method can fix 
ambiguity with no mis-fixing cases. However, the 
variable ratio test suffers from 7.35% and 1.35% mis-
fixing rate when 𝑘2 =0.24 and 0.49. Again, for the 
efficiency of ambiguity fixing, the variable ratio test is 
slightly better.  

 
Table 9 AFR and Mis-fixing rate of R-ratio test with 
certain values of threshold (HARB – HRAO, 1.24Km) 

Tf Fix R-ratio AFR (%) 
𝑘
= 1.0 

𝑘
= 1.5 

𝑘
= 2.0 

𝑘
= 2.5 

𝑘
= 3.0 

𝑘
= 3.5 

≤ 1 100.00 89.97 87.85 81.35 78.09 71.18 
≤2  93.47 93.19 88.68 88.44 82.26 
≤3  95.03 94.65 91.70 91.39 86.73 
≤4  95.66 95.42 93.54 92.78 89.13 
≤10  99.41 99.34 98.85 98.68 97.12 
≤25  100.00 100.00 100.00 100.00 100.00 

Mis-fixing rate(%) 
 8.33 3.47 0.49 0.10 0.03  0.00  

Table 10 AFR and mis-fixing rate of GBAV and R-
ratio test with varying threshold (HARB – 
HRAO, 1.24Km) 

Tf Variable R-ratio 
AFR (%) 

GBAV AFR (%) 

𝑘2
= 0.0  

𝑘2
= 0.24 

𝑘2
= 0.49 

𝑘2
= 0.0  

𝑘2
= 0.24 

𝑘2
= 0.49 

≤1 100.00 89.03 85.97 90.91 80.10 72.36 

≤2  93.51 89.03 99.79 88.23 83.37 

≤3  95.03 89.03 100.00 91.84 86.67 

≤4  95.63 93.58   92.95 88.72 

≤10  99.38 99.06  98.37 95.83 

≤15  100.00 100.00  100.00 100.00 

Mis-fixing rate(%) 
 8.33 0.31 0.10 4.20 0.07 0.00 

 

 

Table 11 AFR and Mis-fixing rate of R-ratio test with 
certain values of threshold (GS01 – GS02, 30.6 km, 
GPS only) 
Tf Fix R-ratio AFR (%) 

𝑘 = 1 𝑘
= 1.5 

𝑘
= 2.0 

𝑘
= 2.5 

𝑘
= 3.0 

𝑘
= 3.5 

0 1 100.00 26.51 7.24 2.28 0.62 0.20 
≤1 60  68.32 32.68 11.62 2.72 0.40 
≤3 180  81.88 65.72 51.34 33.07 23.96 
≤5 300  90.66 77.03 65.65 58.41 45.00 

≤10 600  100.00 100.00 99.36 86.16 71.21 
≤13 780    100.00 99.32 83.26 
≤15 900     100.00 100.00 

Mis-fixing rate(%) 
  49.98 22.38 6.16 0.15 0.05   0.00 

 
Table 12 AFR and mis-fixing rate of GBAV and R-
ratio test with varying threshold (GS01 – GS02, 30.6 
km, GPS only) 
Tf  Variable R-ratio 

AFR (%) 
GBAV AFR (%) 

𝑘2
= 0.00 

𝑘2
= 0.24 

𝑘2
= 0.49 

𝑘2
= 0.00 

𝑘2
= 0.24 

𝑘2
= 0.49 

0 1 100.00 25.83 5.33 15.70 11.37 0.18 

≤1 60  62.76 22.69 72.96 15.43 0.29 

≤3 180  72.65 60.56 92.21 47.63 23.02 

≤5 300  86.30 70.38 96.16 63.21 42.25 

≤10 600  100.00 99.62 100.00 86.33 70.23 
≤ 13 780   100.00  100.00 82.06 
≤ 15 900      100.00 

Mis-fixing rate(%) 
 49.98 7.35 1.56 40.49 0.00 0.00 

For the same baseline, the ambiguity resolution 
performance is much better when using both 
GPS/BeiDou data (Table 13 and 14). With the fix ratio 
test (Table 13), when the threshold is larger than 2.5, 
there are no mis-fixing cases and the time required for 
100% ambiguity fixing is only about 30 epochs or 0.5 
min. When the variable ratio test and the GBAV 
method apply (Table 14), there are no mis-fixing cases 
when 𝑘2 =0.49. The time require for 100% epoch 
ambiguity fixing is only 15s.  
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Table 13 AFR and Mis-fixing rate of R-ratio test with 
certain values of threshold (GS01 – GS02, 
30.6 km, GPS+ BDS) 

Tf  Fix R-ratio AFR (%) 
𝑘
= 1 

𝑘
= 1.5 

𝑘
= 2.0 

𝑘
= 2.5 

𝑘
= 3.0 

𝑘
= 3.5 

0 1 100.00 90.42 90.31 86.55 75.12 57.20 
≤1/30 2  96.08 96.08 92.65 81.71 63.71 
≤1/12 5  99.35 99.35 96.52 87.15 70.99 
≤1/6 10  100.00 100.00 98.26 90.20 76.14 
≤1/4 15    99.18 92.11 79.20 
≤1/2 30    100.00 94.99 84.29 
≤4 240     100.00 100.00 

Mis-fixing rate(%) 

 8.63 0.12 0.05 0.00 0.00 0.00 

 
Table 14 AFR and mis-fixing rate of GBAV and R-

ratio test with varying threshold (GS01 – 
GS02, 30.6 km, GPS+ BDS) 

Tf Variable R-ratio 
AFR (%) 

GBAV AFR (%) 

𝑘2
= 0.00 

𝑘2
= 0.24 

𝑘2
= 0.49 

𝑘2
= 0.0  

𝑘2
= 0.24 

𝑘2
= 0.49 

0 1 100.00 90.53 87.72 72.08 85.38 60.26 
≤ 1/30 2  96.08 94.33 90.71 90.46 81.13 

≤ 1/12 5  99.35 97.58 100.00 93.88 89.68 

≤ 1/6 10  100.00 99.69  100.00 92.57 

≤ 1/4 15   100.00   100.00 

 8.63 0.05 0.00 4.31 0.00 0.00 

From the above examples, we can see that when the 
threshold is high enough, the fix ratio test can achieve 
no mis-fixing case for all the test data. However, for 
different datasets, the thresholds vary from 2.5-3.5. If 
we use 3.5 for all the cases, it required almost 8 times 
more observation time for fixing ambiguity for all 
epochs than that with the threshold of 2.5 in the 
GPS/BDS case (Table 13). When the GBAV method is 
used, with 𝑘2=0.49, there is no mis-fixing case for all 
the datasets tested. This demonstrates that the GBAV 
method can effectively control mis-fixing probability. 
With the variable ratio method, the ambiguity fixing 
efficiency is generally better that that of the GBAV 
method, but there are a number of cases of mis-fixing 
on the three baselines with GPS only observation. 

5. Conclusions 

In this paper, we introduced two new concepts for 
ambiguity validation, i.e. spatial separability condition 
𝑆1𝑖  and mis-fixing condition 𝑀1 . By using these two 

concepts, we can understand why ambiguity mis-fixing 
occurs. If the satellite geometry is not strong enough, 
there may be a few ambiguity combinations which are 
not be able to be separated under the existing 
measurement noise level. Moreover, if the projection of 
true measurement error residuals to the direction of 
𝑉Δ𝑁1𝑖  is too large which causes M0>1, an ambiguity 
mis-fixing happens. The conventional ambiguity 
validation methods, such as ratio test and difference 
test, are the combinations of spatial separability 
condition 𝑆1𝑖  and mis-fixing condition 𝑀1 . The 
distributions of 𝑆1𝑖  and 𝑀1  can be strictly defined 
which are the functions of the measurement quality, the 
number of observed satellites, and the satellite 
geometry. This enables us to set up the thresholds 
based on user requirements for the quality control the 
quality of ambiguity resolution.  

Based on these concepts, we proposed a new 
geometry based ambiguity validation (GBAV) method 
which will ensure different ambiguity combinations to 
be both geometrically separable and mis-fixing 
probability controlled. The distributions and threshold 
computation methods for  𝑆1𝑖  and 𝑀1 are given in the 
paper, with given a significant value for  𝑆1𝑖 and a mis-
fixing probability for  𝑀1 .  

The thresholds for the traditional ratio and 
difference tests are normally determined empirically as 
the statistical distributions are difficult to obtain. In this 
paper, we have shown that the traditional ratio and 
difference tests are the mixture of spatial separability 
condition and mis-fixing condition. By applying the 
same concepts, we can calculate the variable thresholds 
for the both methods, with given observation number 
and mis-fixing probability. However, with these single 
threshold methods, it is possible to have some mis-
fixing cases when two ambiguity vectors are not 
geometrically separable, or 𝑀0 is too small.  

To evaluate the performance of the proposed GBAV 
method, three GNSS datasets with 24-hour observation 
are processed, using the fix and variable threshold ratio 
tests as a comparison. It is found that to achieve no 
mis-fixing for all epochs, the thresholds for different 
datasets are different. If the thresholds are increased too 
high, the efficiency of ambiguity resolution can drop 
significantly. Using the concepts proposed by this 
paper, when we select the mis-fixing probability less 
than 0.01% (or 𝑘2=0.49), there is no mis-fixing case 
with the GBAV method for all three datasets. However, 
there are a few cases of mis-fixing for the variable ratio 
test. On the other hand, the ambiguity fixing efficiency 
for the variable ratio test is slightly better than that of 
the GBAV method. 

Also, combining GPS/BDS systems, the ambiguity 
resolution performance can be significantly improved 
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for medium-range baselines. For a 30 km baseline, it 
requires 15 min for all epoch ambiguity fixed with GPS 
data only. With GPS/BDS data, the time for all epoch 
ambiguity fixed can be reduced to 15s.  
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Abstract: The global BeiDou-3 Navigation Satellite 
System (BDS-3) was completed in July 2020. In 
terms of data processing, the final positioning and 
baseline solving results will be affected by the quality 
of the raw observation data. Therefore, it is necessary 
to analyse and evaluate the data quality of the 
complete BDS-3 constellation and its service 
performance. Based on all observing satellites and 
the open signals from MGEX stations that can track 
BDS-3, improved software is used to analyse the 
complete BDS-3 constellation and signals. Moreover, 
the service performance of BDS-3 is evaluated using 
self-developed software. The geometric configuration 
of the complete BDS-3 constellation is found to be 
slightly better than that of GPS. However, the overall 
multipath error is about 10 cm higher than that of 
GPS, although the increased choke of the measured 
maritime data effectively weakens the multipath error. 
The pseudorange multipath error of each signal runs 
in the order B1I>B2a>B2b>B3I>B2a+B2b>B1C; 
other quality indicators exhibit little difference 
among bands. In terms of service performance, the 
carrier phase residuals are 0.17-0.48cm. After data 
convergence, the relative positioning performance 
fluctuates around 5 cm of the “true value”, although 
the fluctuations in the vertical direction are up to 10 
cm. 

Key words: complete BDS-3 constellation; data 
quality; service performance evaluation 

1. Introduction 

The first BeiDou-3 Navigation Satellite System 
(BDS-3) modules were officially launched in 2009, 
and the last satellite of the network was added in 
2020. The 30 satellites that constitute BDS-3 include 
24 medium-circle earth orbit (MEO) satellites, three 
geostationary earth orbit (GEO) satellites, and three 
inclined geosynchronous orbit (IGSO) satellites [1-3]. 
BDS-3 provides satellite signals at various 
frequencies, with the two open-service signals of B1I 
(1561.098 Hz) and B3I (1268.52 Hz) in the B1 and 
B3 frequency bands, the B1C frequency band centred 
on 1575.420 MHz (the same as GPS L1 and Galileo 
E1), and the B2a frequency band centred on 1176.450 
Hz (the same as GPS L5, QZSS L5, IRNSS L5, and 
Galileo E5a). The most recently launched satellite 
added the B2a+B2b (1191.795 Hz) signal [4-7]. On 
December 27, 2019, the B2b signal interface 
document was published, disclosing two B2b 
(1207.14 Hz) signals, which provide basic navigation 
services, and the PPP-B2b signal, which provides 
precision single-point positioning services [8]. 

As the basis of BDS data processing, the quality 
of the original data directly affects the final 
positioning results or baseline solution. Extensive 
analysis of the BDS data quality has been conducted, 
including comparisons with other systems. In terms 
of quality evaluation, Cai et al. (2016) analysed the 
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noise and multipath effect of BDS-2 based on the 
zero-baseline double difference, and found that the 
noise of the B1 band has the largest pseudorange 
multipath error (mean error of 0.36 cm), whereas the 
noise of the carrier phase in different frequency bands 
varies from 0.9-1.5 mm [9]. In 2018, several BDS-3 
satellites were launched. Yang et al. (2019) studied 
the basic performance of BDS-3, and reported that 
the post-processing of the orbit can reach 
centimetre-level accuracy. Additionally, the average 
satellite clock offset uncertainty of 18 MEO satellites 
was found to be 1.55 ns, and the mean ranging error 
of space signals was about 0.474 m. A method to 
improve the positioning, navigation, and timing 
services was subsequently developed [10]. In 2019, 
some BDS-3 satellites added new signals. Dai et al. 
(2019) studied the noise and multipath level of these 
BDS-3 signals and satellites, and showed that the 
standard deviation (STD) of the pseudorange noise in 
the B1I, B3I, B1C, and B2a bands was 7.4, 6.7, 14, 
and 13 cm, respectively, whereas the STD of the 
carrier phase noise was 1.84, 1.85, 1.85, and 1.85 cm, 
respectively. The STD of the pseudorange multipath 
errors in bands B1I, B3I, B1C, and B2a was 0.34, 
0.21, 0.48, and 0.33 m, respectively [11]. In terms of 
data service performance, the pseudo-single point 
positioning and precise single-point positioning (PPP) 
were tested by Mu et al. (2020), who showed that 
BDS-3 has a slightly lower positioning accuracy than 
GPS and Galileo, but performs better than 
GLONASS [12]. Zhang et al. (2019) combined the 
BDS-3 measurement data and showed that the 
ambiguity resolution efficiency of RTK could be 
improved by incorporating the BDS-3 measurements, 
where by the success rate increased from 88.5 to 
91.4%. The convergence time of the PPP algorithm 
was shortened from about 1 h to less than 30 min, 
and the positioning accuracy was significantly 
enhanced. Both BDS-3 and GPS can provide 
centimetre-level dynamic positioning accuracy [13]. 
Different signal frequency bands exhibit different 
data service performance. Zhu et al. (2021) analysed 
the new B1C and B2a signals of BDS-3, and found 
that the positioning performance was comparable to 
that of GPS and Galileo [14]. 

Most previous research has focused on BDS-2 or 
subsets of the BDS-3 satellites. Given the limitations 
of existing software and the scarcity or 
incompleteness of signal data, the data quality and 
basic evaluation methods of BDS-3 have not been 
systematically tested since the completion of the 
network. Existing studies have only examined a few 
BDS-3 satellites and certain signal bands; in 
particular, the data quality of satellites above C37 has 
rarely been studied. In this paper, based on all the 
observable MGEX in-orbit satellite data of BDS-3 
and the data quality of the associated signals, 
indicators related to observation data quality and data 
service performance are studied and compared with 
GPS. Comparing and evaluating the complete BDS-3 
data quality not only provides a systematic summary 
of the complete global BDS-3 network, but also lays 
the foundation for studying the application of BDS-3 
in the production process. 

2. Architecture of BDS-3 and Dataset Description 

Since February 2022, more than 500 IGS tracking 
stations have been in operation around the world. 
GNSS multi-mode tracking stations provided the 
GNSS experimental data for the study of BDS-3 data 
quality and evaluation of the data performance. The 
data used in the experiment were divided into static 
and dynamic data. The static data were taken from 
the MGEX IGS stations, which can receive all BDS-3 
signals. The specific station information is listed in 
Table 1. The selected observation data were from day 
of year (DOY) 33-42, 2021. To analyse the global 
data service performance of BDS-3, data were 
selected from two stations located in China (WUH2 
and URUM) and five stations in other countries 
(POTS, SGOC, SUTM, ULAB, and WIND).  

The satellites that participated in the calculations 
at each station are listed in Table 2. The GNSS data 
for the shipboard dynamic experiment were collected 
from the offshore waters of Tangdao Bay, Qingdao, 
China, near to the China University of Petroleum 
(East China), on December 16, 2021, over an 
observation duration of 2 h. A choke coil was 
installed on the antenna, as shown in Figure 1. 
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Table 1 Selected IGS station information 

Site Location latitude /N longitude /E Height/m Receiver Antenna 

POTS Germany 52.379 13.066 144.4 

JAVAD        
TRE_3 

JAVRNGA
NT_G5T-N

ONE 

SGOC Sri Lanka 6.892 79.874 -78.5 

SUTM South Africa -32.381 20.811 1797.6 

ULAB Mongolia 47.865 107.052 1575.7 

URUM Urumqi 43.808 87.601 858.9 

WIND Namibia -22.575 170.189 1734.7 

WUH2 Wuhan 30.532 114.357 25.8 

 

 

3. BDS-3 Data Quality Evaluation 

3.1 Multipath Error  

The multipath combination is a geometry-free and 
ionosphere-free combination formed by a 
one-frequency code and two-frequency phase 
measurements. It contains the combined noise and 
multipath errors of the code and phase measurements. 
However, because the noise and multipath errors of 
the phase are somewhat smaller than those of the 
code, the combination series mainly reflects the code 
noise and its multipath error. The GNSS 
dual-frequency multipath error is usually evaluated 
using a linear combination of the pseudorange and 
carrier [15]. The specific calculation can be written as: 

              (1) 

            (2)

                                                          (3) 

Table 2 BDS-3 satellites used in the calculations  

Site Satellites involved in the solution 
POTS 

C19-C30 C32-C46 C60 
SGOC 
SUTM 
ULAB 
URUM 

WIND 
C20 C21 C23-C30 C32 C33 C34 C36 

C37 C38 C40-C46 C60  
WUH2 C19-C30 C32-C46  

 

 
Fig. 1 Dynamic station setup 
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                                    (4) 

where MP represents the multipath error, M is the 
pseudorange multipath error, and m is the carrier 
phase multipath error. When there is no cycle skip, C 
is a constant. MP is mainly affected by the 
pseudorange multipath, because the values of m1 and 
m2 are much smaller than M1 and M2, which are used 

to measure the multipath effect. The multipath errors 
of BDS-3 visual satellites in all frequency bands were 
analysed, and the results from each observation 
station were averaged over 10 consecutive days and 
compared with GPS. The results are shown in Figures 
2 and 3. 

 
Fig. 2 BDS-3 pseudorange multipath error of station 

 
Fig. 3 GPS pseudorange multipath error of station 

(1) The multipath errors of each frequency band 
are slightly different, and the pseudorange multipath 
errors of each frequency band of BDS-3 run in the 
order B1I>B2a>B2b>B3I>B2a+B2b>B1C. The 
largest multipath errors are in bands B1I and B2a, 
and the maximum value of 42.16 cm appears in band 
B2a at station SGOC. The smallest multipath error is 
in band B1C, and the minimum value is 24.10 cm at 
station URUM. 

(2) The multipath error of each frequency band of 
BDS-3 is worse than that of the GPS data from the 

same station over the same period. The maximum 
pseudorange multipath error of GPS is 34.44 cm in 
band L2 at station WIND, some 7.62 cm smaller than 
the equivalent value for BDS-3. The minimum GPS 
pseudorange multipath error of 15.00 cm occurs in 
band L5 at station URUM. This value is 9.10 cm 
smaller than the equivalent for BDS-3. Therefore, the 
multipath error of BDS-3 requires further study. 

(3) The pseudorange multipath errors of BDS-3 
and GPS exhibit similar trends. For instance, the 
multipath errors at stations SUTM and URUM are 
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small, whereas those at stations POTS, SGOC, and 
WIND are large. These trends are related to the 
environment and observation conditions of a 
particular station at that time. 

To solve the problem of insufficient research on 
BDS-3 satellites above C37, four satellites were 
selected for further analysis: C40 (IGSO), C44 
(MEO), C59 (GEO), and G30 (MEO). For these 
BDS-3 satellites, Figure 4 shows the variation in the 
multipath effect with respect to elevation angle for 
each frequency at station WUH2. The multipath 
errors of the IGSO and MEO satellites exhibit 

opposite trends with respect to elevation angle. This 
is mainly because, as the satellite enters or leaves the 
observation field of view, serious multipath errors 
and noise occur. The MEO satellite loses significant 
amounts of data through signal interruption; because 
the GEO satellite experiences little change in 
elevation angle, the corresponding multipath error is 
small and varies gently. Comparing all frequency 
bands, B1I has the most serious multipath effect 
among the different orbital types; the GPS satellite 
and MEO satellite of BDS-3 exhibit the same trend. 

 

(a) C40                                  (b) C44 

 

(c) C59                                   (d) G30 

Fig. 4 C40/C44/C59/G30 pseudorange multipath error and elevation angle variation 

Next, we analysed the multipath effects of two 
common frequency bands collected from the sea. 
Figure 5 shows that, after adding the choke, the 
multipath error of the two GEO satellites (C59 and 
C60) is greatly weakened and basically fluctuates 
around 1 cm. The multipath error of some IGSO and 

MEO satellites is also weakened, fluctuating around 
10 cm. Therefore, the marine dynamic platform 
effectively reduces the impact of multipath error on 
BDS-3 service performance through the appropriate 
placement of choke coils. 
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Fig. 5 BDS-3 multipath time series diagram of B1I/B3I 

3.2 Signal-to-Noise Ratio 

The signal-to-noise ratio (SNR) is the ratio of 
carrier signal intensity to noise intensity. The SNR 
level is mainly affected by antenna gain parameters, 
the state of the correlator in the receiver, and 
multipath effects. It is one of the indicators reflecting 

the observation quality of the carrier phase, and is 
expressed as the ratio of the average power of the 
signal to the average power of the noise [16]. The SNR 
of each frequency band at seven stations over 10 
consecutive days was averaged and compared with 
GPS data. The results are shown in Figures 6 and 7. 

 
Fig. 6 BDS-3 SNR of stations 

 
Fig. 7 GPS SNR of stations 

(1) Although the SNR of each station in each 
frequency band is slightly different, the difference 
between the SNR of BDS-3 in all frequency bands is 
generally small. However, the SNR of the B2a+B2b 

frequency band is large. The minimum value of 39.14 
dB·Hz in frequency band B2b occurs at station 
SGOC; by comparison, frequency band B2a+B2b has 
a maximum value of 52.88 dB·Hz at station WUH2, 
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a difference of 13.74 dB·Hz. 

(2) The SNR of BDS-3 in each band is 
comparable to that of GPS at the same station. The 
maximum SNR of GPS is 51.04 dB·Hz in the L5 
band at station POTS, which is 1.84 dB·Hz lower 
than the maximum value of BDS-3. The minimum 
SNR of GPS is 38.87 dB·Hz in the L1W and L2W 
bands at station SGOC, some 0.27 dB·Hz larger than 

the minimum value of BDS-3. The BDS-3 values are 
basically consistent with the average SNR of each 
GPS station, and the average SNRs basically 
fluctuate from 40-50 dB·Hz. 

The relationship between SNR and satellite 
elevation angle is now analysed by examining the 
C40 (IGSO), C44 (MEO), C59 (GEO), and G30 
(MEO) satellites. The results are shown in Figure 8. 

 

(a) C40                                  (b) C44 

 

(c) C59                                   (d) G30 

Fig. 8 C40/C44/C59/G30 SNR with respect to elevation angle 

Figure 8 shows that the SNR of the IGSO and 
MEO satellites gradually increases with increasing 
elevation angle, and varies within the range 22-60 
dB·Hz. Because the elevation angle of GEO satellites 
remains stable, the SNR of the two frequency bands 
does not change significantly, varying within the 
range 46-48 dB·Hz. For the IGSO and MEO satellites 
of BDS-3, the SNR of band B1I is lower than that of 
the other bands, and the SNR of B2b and B2a+B2b is 

the highest. 

Analysing the SNRs of the measured marine data, 
Figure 9 indicates that, except for the GEO satellites, 
the SNR exhibits the opposite trend to that of the 
multipath effect and contrasts with the observations 
from static stations. The SNR does not change 
significantly, basically fluctuating in the range 30-55 
dB·Hz. 
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Fig. 9 BDS-3 SNR time series diagram of B1I/B3I 

4. BDS-3 Data Service Performance Indicators 

4.1 BDS-3 Precision Factor 

The service performance of GNSS is related to 
the spatial geometric configuration of the satellite. In 
terms of measurement, the dilution of precision (DOP) 
is often used to describe the basic structure of the 
spatial geometric distribution of the satellite [17], as 
shown in the following expressions: 

     (5) 

     (6) 

    (7)  

    (8)  

    (9) 

The geometric DOP (GDOP) is the distance 
vector amplification factor between the receiver and 
the satellite caused by system ranging errors. If the 
spatial distribution of the satellite is not concentrated 
in one region and can be evenly distributed in 
different directions, the positioning accuracy of the 
satellite is higher than that of the uneven distribution 
in the same case. The position DOP (PDOP) 
describes the error caused by the influence of the 
geometric shape between the satellite and the receiver. 

A better geometric distribution of satellites in the sky 
gives a smaller PDOP value and higher positioning 
accuracy of the satellite system. The horizontal DOP 
(HDOP) is the square root of the sum of the squares 
of errors in latitude and longitude, which describes 
the positioning accuracy in the horizontal direction. 
The vertical DOP (VDOP) describes the positioning 
accuracy in the vertical direction. HDOP is consistent 
with VDOP in that lower values indicate higher 
positioning accuracy [18]. 

The mean DOP values of BDS-3 and GPS over 10 
consecutive days at all seven stations are shown in 
Figure 10. 

Figure 10(a) shows that, except for stations 
WIND and SUTM, the PDOP value of BDS-3 is 
slightly lower or equivalent to that of GPS. The 
largest difference appears at station WUH2, where 
the BDS-3 PDOP is 0.46 lower than that of GPS. 
This indicates that the distribution of BDS-3 in the 
sky is slightly better than that of GPS satellites. From 
Figure 10(b), it is apparent that the GDOP of BDS-3 
is equivalent to that of GPS, except at stations ULAB 
and WUH2. At these stations, BDS-3 has a smaller 
GDOP than GPS, and the maximum difference 
reaches 0.78 at ULAB. The horizontal and vertical 
accuracy factors exhibit similar variation trends as 
GDOP and PDOP. BDS-3 has slightly higher values 
than GPS at three stations, and lower values than 
GPS at the other four stations. The largest differences 
occur at station WUH2, where the HDOP and VDOP 
values of BDS-3 are 0.28 and 0.34 lower than those 
of GPS, respectively. Thus, in general, the error 
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magnification of BDS-3 is smaller than that of GPS.  

 

(a) (b) 

 

(c)                               (d) 

Fig. 10 BDS-3/GPS precision factor at each station 

The horizontal precision factor of BDS-3 and GPS 
is smaller than the vertical precision factor, indicating 
that the horizontal accuracy is greater than the 
vertical accuracy. The maximum HDOP and VDOP 
of BDS-3 at station WUH2 are 1.11 and 2.20, 
respectively. 

4.2 Three-Difference Residual of Carrier Phase 

The precision of carrier phase observations can 
often reach the millimetre level. These observations 
can be combined with pseudorange observations to 
detect cycle slip. Because the observation values do 
not vary much over short periods of time, the 
precision of carrier phase observations can be 
expressed using the three-difference method. The 
adjacent epochs between each frequency band are 
changed three times to obtain L3, which is used to 
evaluate the accuracy of the carrier phase 
observations. The evaluation method can be written 
as: 

    (10) 

where i denotes the observation epoch and , 

,  denote the first, second, and third 

differences. The accuracy is evaluated by calculating 
the mathematical expectation and variance of the 
third difference between the desired epochs. The 
mathematical expectation and variance are calculated 
as: 

 

   (11)  
where n represents the number of observed epochs, 

E(L) is the mathematical expectation, and  is the 

variance. 
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Taking the 2021 DOY 33 data from station 
WUH2 with a sampling rate of 1 s and no cycle skip 
after prior inspection, the carrier phase accuracy of 

each frequency band of BDS-3 and GPS was 
calculated. The results are presented in Tables 3 and 
4. 

Table 3 GPS carrier phase accuracy in each frequency band 

system GPS 

band L1C L1W L2W L2X L5X 

accuracy /mm 5.66 5.63 5.59 5.57 5.63 

Table 4 BDS-3 carrier phase accuracy in each frequency band 

system GPS  

band L1X L2I L5X L6I L7Z L8X 

accuracy /mm 7.89 8.14 8.13 8.19 8.3 8.29 

 

The carrier phase accuracy of each band of BDS-3 
is almost unchanged and fluctuates within a range of 
0.5 mm. The largest carrier phase error of 8.3 mm 
appears in band B2b, and the smallest error of 7.89 
mm occurs in band B1C. The carrier phase 
observation accuracy of BDS-3 is lower than that of 
GPS. The minimum error of GPS occurs in frequency 
band L2W, and is 2.3 mm smaller than that of BDS-3; 
the maximum error appears in frequency band L1C, 
and is 2.64 mm smaller than that of BDS-3. In the 
case of no cycle skip, the carrier phase positioning 
accuracy of BDS-3 in each frequency band exhibits 
little difference to that of GPS, and the difference is 
within 3 mm. 

4.3 Performance Analysis for Relative Positioning  

4.3.1 Dynamic shipborne experiment 

In a real dynamic environment, the satellite signal 
is often out of lock or blocked. For the special 
constellation configuration of BDS-3, some 
high-latitude areas of China may suffer from 
frequently blocked signals from geostationary 
satellites because of their low elevation angle. Once 
the signal becomes occluded, the station will start to 
search for other satellites and solve the data again, 
which will increase the positioning error in this 
period. Therefore, it is necessary to conduct real-time  

positioning analysis using BDS-3 data through 

dynamic carrier experiments to study the dynamic 
positioning performance. 

The first set of calculation examples use dynamic 
shipborne experimental data, collected on September 
26, 2020, from 04:00:00-06:57:00 UTC. The 
observation environment of the whole measurement 
area is good, and there is basically no obstacle 
occlusion. As special hardware is required to receive 
BDS-3 satellite signals, the GAMG measurement 
station was selected as the reference receiver. This 
mobile station is located in the sea near Weihai City, 
China (37°35 '8.88 "N, 122°6' 41.67" E) and can 
receive most BDS-3 satellite signals. The distribution 
of the running track for this mobile station is shown 
in Figure 11, and the distribution of the onboard data 
installation instruments and equipment is shown in 
Figure 12: the receiver models on this dynamic 
station are Septentrio PolaRx5 and Trimble R9. The 
receiver had a sampling interval of 1 s and the 
baseline length was approximately 563 km. The 
LAMBDA method was used to fix the ambiguity. 

In the actual dynamic environment, it is difficult 
to obtain the “true value” of the anchor point. 
Therefore, based on the principle of absolute distance 
between two antennas, the coordinate position of 
each antenna was calculated for every epoch, and 
then the distance between the two antennas was 
calculated as the evaluation standard[19]. 
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Fig. 11 Trajectory diagram of shipboard 

 

 Fig. 12 Antenna position of experiment 

 

Fig. 13 Changes in satellite number and DOP  

Figure 13 shows the changes in DOP values at 
antenna ANTA. The number of visible BDS-3 
satellites ranged from 16-19. A higher number of 
satellites greatly improves the geometric structure of 
the observation satellites. From the DOP values in the 
figure, we find that PDOP and GDOP are higher than 
1.8, HDOP is higher than 1.5, and VDOP is higher 
than 1.0.  

 
Fig. 14 ANTA-ANTD variations (left) and their differences from the true value (right) 

 
Fig. 15 ANTA-ANTB variations (left) and their difference from the true value (right) 
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Fig. 16 ANTB-ANTD variations (left) and their difference from the true value (right) 

Figures 14-16 (left) illustrate the fluctuations in 
the distance between antennas ANTA, ANTB, and 
ANTD over time. Under normal circumstances, the 
distance between them should be fixed. The 
right-hand panels in these figures represent the 
differences between the distance in each epoch and 
the true value (taken as the mean of multiple 
measurements). It can be seen from the diagram, 

three experiments of overall data calculating wave is 
small, only during the first half of the baseline weight 
appear larger deviation. Therefore, when using 
BDS-3 for real-time dynamic data positioning, the 
positioning accuracy between antennas is good after 
data convergence, basically fluctuating within a range 
of 5 cm. 

Table 5 Shipboard data processing results  

baseline  Min/cm  Max/cm  Mean/cm Sdev/cm 

ANTA-ANTD -5.77 11.98 -0.28 1.89 

ANTA-ANTB -3.61 4.19 -0.41 0.94 

ANTB-ANTD -3.06 10.69 1.06 1.75 

Table 5 presents statistics from processing the 
data of 5000 epochs after convergence. The largest 
deviation occurs between ANTA and ANTD, and the 
largest difference after convergence is 11.98 cm. The 
highest average value is for the distance between 
ANTB and ANTD. The mean distance between 
ANTA and ANTD and between ANTA and ANTB is 
less than 0.5 cm. In each case, the STD between any 
two antennas is less than 2 cm. Overall, the real-time 
dynamic positioning accuracy of BDS has reached 
the centimetre level, which is basically equivalent to 
the simulation experiment accuracy of static stations. 

4.3.2 BDS-3 static experiment 

To evaluate the difference in dynamic relative 
positioning performance between BDS-3 and GPS, a 
set of static data was dynamically processed using 

self-developed software. The true values for the 
experiment were taken from coordinates provided by 
ITRF. The specific parameters of the station are listed 
in Table 6. 

Figure 17 shows that the real-time dynamic 
relative positioning of BDS-3 requires some time to 
locate the ambiguity. The positioning time is about 25 
min. During this period, the data fluctuate 
significantly, while the ambiguity is fixed. The data 
fluctuations during the fixed ambiguity time are 
relatively small, and are related to the number of 
participating satellites. The dual-frequency GPS 
observations have an RMS of 6 mm, whereas those 
of BDS-3 have an RMS of 4–5 mm. This is related to 
the lack of BDS-3 satellite data observed during this 
period. 
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Table 6 Information of LEIJ-HUEG data 

 

 
Fig. 17 Time series for the bias variation of position based on BDS-3/GPS

Table 7 Statistics of GPS/BDS-3 data processing results 

System Direction  Min/cm   Max/cm  Mean/cm STD/cm 

GPS 

ΔN -0.32 4.91 0.93 1.01 

ΔE -0.36 2.58 -0.17 1.41 

ΔU -13.21 6.02 -2.17 5.17 

BDS-3 

ΔN -3.91 11.29 0.86 0.72 

ΔE -1.93 2.47 0.33 2.24 

ΔU -0.38 6.36 0.77 3.23 

Table 7 summarizes the data of 2000 epochs 
after convergence. The largest deviation occurs in the 
vertical direction of GPS. In addition to the large 
deviation values, the real-time dynamic positioning 
accuracy of BDS-3 has reached the centimetre level. 
Once the ambiguity has been fixed, the data converge 

around 0, with horizontal fluctuations of 2-3 cm and 
vertical fluctuations of ~10 cm. The accuracy of 
real-time dynamic relative positioning after data 
convergence is basically equivalent to that of GPS. 

declaration parameter 
Antenna LEIAR25.R4   LEIT 
Receiver JAVAD TRE_3 

Time 2021-9-25 14:00:00-14:59:59 
Sampling 1s 

Baseline distance 520km 
Elevation mask 10° 

BDS-3 satellite C24/C25/C26/C27/C33/C37/C38/C41/C42/C43/C46/C60 
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5. Conclusions 

(1) This study has analysed the complete BDS-3 
data quality. The overall multipath error of BDS-3 is 
larger than that of GPS by around 5-10 cm. In terms 
of SNR, BDS-3 is basically consistent with each GPS 
station, and the average SNR basically fluctuates 
from 40-50 dB·Hz. 

(2) In terms of service performance, in the case of 
no cycle skips, the carrier phase positioning accuracy 
of BDS-3 in each frequency band is similar to that of 
GPS, with the difference being within 3 mm. The 
four indices of DOP at most stations are lower than 
those of GPS. The maximum difference appears at 
station ULAB, where the GDOP of BDS-3 is 0.78 m 
lower than that of GPS. The double difference 
pseudorange residuals of each frequency band from 
the zero baseline range from 0.2-0.3 m, and the 
carrier phase residuals range from 0.17-0.48 cm. 
After data convergence, the relative positioning error 
fluctuates within 5 cm of the true value, although the 
fluctuations in the vertical direction are larger (within 
10 cm). 

(3) The quality indicators of existing BDS-3 
signals were also evaluated. In terms of the 
pseudorange multipath error, the average value of the 
observation data at each station over 10 consecutive 
days was found to run in the order 
B1I>B2a>B2b>B3I>B2a+B2b>B1C. Frequency 
bands B2a+B2b and B2a have large SNRs, while the 
other bands have SNRs of 40-45 dB·Hz. The carrier 
phase accuracy of BDS-3 varies little in each 
frequency band, with fluctuations of only 0.5 mm. 
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Abstract: This manuscript establishes a generic 
framework for comprehensive error analysis in 
discrete Kalman filtering with constraints, which 
systematically provides a complete set of algorithmic 
formulas along with demonstrating an alternative 
process of theoretical analytics of discrete Kalman 
filter. This constructive work aims extensively to 
standardize the formulation of Kalman filter with 
constraints. In analogy to the similar framework for 
standard discrete Kalman filter (without any 
constraints), the proposed framework specifically 
considers: model formulation vs. the error sources, 
the solution of the state and process noise vectors, 
the residuals for the process noise vector and the 
measurement noise vector, the redundancy 
contribution of the predicted state vector, process 
noise vector and measurement vector, and other 
relevant essential aspects, of which some of the 
features are essential to comprehensive error analysis, 
but are nonexistent yet in the primary algorithm in 
Kalman filtering with constraints. Besides, the 
algorithmic form of the Extended Kalman filter with 
constraints is also provided for practical purpose. At 
the end, specific remarks about the developed 
framework are given to emphasize on its usage to a 
certain extend. 

KEY WORDS: Kalman filter, state constraint, 
error analysis, generic framework, redundancy 
contribution. 

1. INTRODUCTION 

The Kalman filter is a recursive estimator that 
provides estimates of a group of selected states on 
the ground of a specific system model and 
measurements that are acquired over time. Its 
applications have steadily expanded in sciences and 
engineering since the 1960s.  

Usually, the Kalman filter consists of a system 

model associated with its modeling errors as  
process noises and a measurement model associated 
with measurement noise. However, there are also 
many circumstances under which a priori 
knowledge of a dynamic system leads to equality 
constraints that may be imposed on the system states 
in Kalman filtering. Examples of this include path-
constrained motion along roadways [Yang et al, 
2005; Hasberg et al 2012] and constant velocity 
motion of tracking targets [Alouani and Blair, 1991]. 
In multisensor integrated navigation, the states 
representing the attitude commonly involve specific 
constraints, e.g., the elements of the direction cosine 
matrix have to conform to orthonormality conditions 
and the elements in a quaternion vector or rotation 
vector have to be in unit norm. Apparently, the 
formulation of indirect observation (Least Squares) 
adjustment with constraints in Geodesy and 
Geomatics has been generally standardized [Mikhail, 
1970; Rao and Toutenburg, 1999; Wang, et al, 2019]. 
By contrast, the formulation on states-constrained 
Kalman filter is far from being standardized to the 
same degree. 

Constrained Kalman filtering by augmentation 
was first proven by Doran [1992], which has been 
considered as a seminal paper on the subject 
[Pizzinga, 2012]. There exist several dominant 
strategies to impose constraints on the system states 
in Kalman filtering, which are generally divided into 
three categories [Simon, 2010; Khabbazi and 
Esfanjani, 2014]: 
Reparameterization: this technique incorporates any 
system state constraints by reducing the 
parameterization of the system, through which the 
physical meaning of the system states may be lost 
[Simon, 2010].  
“Perfect” Observations: this technique treats the 
system state constraints as pseudo-observations with 
zero variance. Without further simplification, it may 
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cause numerical instability [Doran, 1992; Alouani 
and Blair, 1991]. 

Projection: this technique transforms the estimate of 
the system states onto a constraint surface [Khabbazi 
and Esfanjani, 2014]. Such transformation may be 
accomplished through projection of the system state 
estimate [Simon and Chia, 2002], projection of the 
system itself [Ko and Bitmead, 2007], or projection 
of the Kalman gain matrix [Teixeira et al, 2008]. 
State projection is the most commonly used method 
of imposing constraints on the system states in 
Kalman filtering [Khabbazi and Esfanjani, 2014]. 
The Kalman gain projection has been generalized for 
non-linear constraints [Xu et al, 2017]. These 
techniques may also apply their constraints less 
strictly by taking a weighted average between the 
constrained and the unconstrained solution [Baker 
and Thennadil, 2019], or by taking model 
uncertainty into account in the gain projection 
approach [Khabbazi and Esfanjani, 2015]. 

Besides, some other techniques have also been 
used to impose equality constraints in Kalman 
filtering that do not fit under the above mentioned 
three broad categories. Xu et al [2013] considered 
constraints a priori information that should also be 
incorporated into a system’s dynamic models. 
Ghanbarpourasl and Zobar [2022] utilized singular 
value decomposition to separate the system state into 
a deterministic (i.e. fully constrained) and a 
stochastic component. Pizzinga [2012] framed the 
constrained Kalman filter as a recursive least-
squares problem.       

Unfortunately, there is still a lack of generic 
algorithmic formulas directly for the standard form 
of the discrete Kalman filter with constraints in 
literature for conducting comprehensive error 
analysis. This motivates the authors to develop a 
complete set of the generic formulas for it, so that 
one can easily adapt to theoretical development and 
practical implementation.     

Following this introduction, this manuscript first 
summarizes the innovative alternate formulation of 
standard Kalman filter originally deduced by Wang 
[1997] and also specifically detailed and applied in 
[Caspary and Wang, 1998; Wang, 1997; Wang, 
2008, 2009; Wang et al, 2009; Wang et al, 2009; 
Gopaul et al, 2010; Wang et al, 2010; Qian, 2017; 
Qian, et al, 2015, 2016; Wang et al, 2015, 2021; 
Zhang et al, 2017]. Then, as the core of this 
manuscript, Section 3 systematically develops the 
theoretical aspects and practical algorithm in 
discrete Kalman filtering with constraints, which 
innovatively promote the comprehensive error 
analysis. Section 4 further delivers the proposed 
algorithm in the form of Extended Kalman filter 
with constraints. The manuscript ends with 
concluding remarks in Section 5. 

2. ALGORITHMIC FORMULATIONS OF 
STANDARD KALMAN FILTER 

In general, a Kalman filter estimates the state 
vector by minimizing its mean squared errors after 
the minimum variance principle or equivalently its 
weighted sum of the residuals squared after the 
Principle of Least Squares, on the basis of operating 
system and measurement models recursively.    

2.1 Standard form of Discrete Kalman filter 

Let us define the standard form of Kalman filter 
first. Consider a linear or linearized system 
described in state space and the data are made 
available over a discrete time series 

Nk tttt      10 ...,,...,,, , of which each time instant 
corresponds to an observation epoch and is simply 
depicted as Nk     1 0 ...,,...,,, . Without loss of 
generality, the formulation here omits the 
deterministic system input. 

At an arbitrary observation epoch k ( Nk   1 ≤≤ ), 
the system and measurement models are given as 
follows [Wang et al, 2021]: 

)(),()(),()( kkkkkkk wBxAx 111 −+−−=       (2.1) 

(or simply )()()1()()( kkkkk wBxAx +−=   (2.1a)) 

)()()()( kkkk ΔxCz +=                         (2.2) 

wherein )(kx , )(kz , )(kw , and )(k∆  are the n-
dimensional state-vector, the p-dimensional 
observation vector, the m-dimensional process noise 
vector, and the p-dimensional measurement noise 
vector, respectively, while ),( 1−kkA , ),( 1−kkB , 
and )(kC  are the nn× coefficient matrix of )(kx , 
the mn× coefficient matrix of )(kw , and  the 

np× coefficient matrix of )(kz , respectively. 
About the relevant stochastic information, 

))(,(~)( kNk Qow  and ))(,(~)( kNkΔ Ro are 
assumed, where ),( baN  represents a normal 
distribution with a and b as its expectation (vector) 
and variance (matrix). Between two different 
observation epochs, it is presumed to have 

Oww =))(),(( jiCov  and O=))(),(( jΔiΔCov  for 
( ji ≠ ), and Ow =))(),(( jΔiCov  for any i and j. 

Besides, the initial state vector is given as )(0x  with 
its variance matrix )(0xxD  and is independent of  

)(kw  and )(k∆ for any k, i.e., ),(( kCov w  
Ox =))0(  and Ox =))(),(( 0kΔCov . 

2.2 The Solution after Minimum Variance 
Principle 

Without any unnecessary repetition of the 
solution derivation, the Kalman filtering algorithm at 
k from k-1 upon the definition in Section 2.1 after 
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the minimum variance principle is directly 
summarized below: 

)()()1/(ˆ)(ˆ kkkkk dGxx +−=             (2.3) 

with its associated variance matrix 

)()()()]()([               

)1/()]()([)(

kkkkkI
kkkkIk

TT GRGCG
DCGD xxxx

+−⋅

−−=
  (2.4) 

wherein I is a nxn identity matrix and G(k) is a nxp 
Kalman gain matrix: 

)()()1/()( 1 kkkkk dd
T −−= DCDG xx                     (2.5) 

The predicted state vector (from the time update) 
and its variance matrix are as follows: 

)1/1(ˆ)()1/(ˆ −−=− kkkkk xAx                        (2.6) 

)()()(                         

)()1/1()()1/(

kkk
kkkkkk

T

T

BQB
ADAD xxxx

+

−−=−
     (2.7) 

The system innovation vector and its variance matrix 
are computed after: 

)1/(ˆ)()()( −−= kkkkk xCzd           (2.8) 

)()()1/1()()( kkkkkk T
dd RCDCD xx +−−=   (2.9) 

Essentially, the system innovation vectors: 
... ),( ..., ),2( ),1( kddd  are independent of each other 

[Chui & Chen, 1987], i.e., Odd =))(),(( jiCov  
( ji ≠ ). However, the elements in )( kd  at epoch k 
are not only correlated, but also blend all of the 
separate error sources. Traditionally, the error 
analysis has been centered on the system innovation 
series. In addition, it is proved that the estimate of 
the state vector )(kx  and the system innovation 
vector )( kd  are independent of each other based on 
(2.3) and (2.8), i.e., 

Okd =)(xD                                   (2.10) 

2.3 Alternate Formulation for Comprehensive 
Error Analysis 

Obviously, )(kd  is originated from the process 
noise series ...),(...,),(    1 kww , the measurement 
noise series ...),(...,),(    1 k∆∆  along with the initial 
state vector )(0x . Therefore, as a matter of fact, the 
system and measurement models in (2.1) and (2.2) 
are associated with three groups of independent 
stochastic information that is propagated into the 
state solution from time to time. Specifically at k, the 
system is contaminated by (i) the measurement noise 
vector )(kΔ , (ii) the process noise vector )(kw , and 
(iii) the noise associated with the predicted state 
vector from )1()1,( −− kkk xA , into which ..., ),1(∆

)1( −k∆  and  1),(w )(..., 1  −kw  starting with )(0x
are propagated through the recursive mechanism as 
in (2.1) and (2.2) from the past.  

Along two different paths, either after the 
Minimum Variance Principle or Least Squares 
Principle, the Kalman filtering algorithm is 
equivalently derived. A widely repeated derivation is 
to deliver the equivalent solution on the ground of 
the predicted state vector )1/( −kkx , as a pseudo-
measurement vector by merging (ii) and (iii) as in 
(2.1) in Least Squares approach, and the 
measurement vector )(kz  from (i). An apparent 
drawback to this formulation is that two groups of 
the independent stochastic information in (ii) and (iii) 
are blended into )1/( −kkx and are no more 
separable in  error analysis.       

To enhance the error analysis in discrete Kalman 
filtering, Wang [1997] proposed an innovative 
alternate formulation. Innovatively, the system state 
prediction in (2.1) was further split into two pseudo-
measurement vectors: 

)()1/(ˆ)1(ˆ)()( kkkkkk
xxllx DxxAl −=−=   (2.11) 

)(                               )()( 0 kkkw Qwl =        (2.12) 

with ow =)(k0  (zero mean presumed) and 

)()1()()( kkkk T
xx ADAD

xx ll −=           (2.13) 

The real measurement vector )(kz  remains as in 
(2.2) and denoted by )()( kk zlz = . 

The residual equations corresponding to (2.11), 
(2.12) and (2.2) are as follows: 

)()(ˆ)()(ˆ         )( kkkkk xx
lwBxvl −−=          (2.14) 

)()(ˆ                            )( kkk ww
lwvl −=          (2.15) 

)(                     )(ˆ)()( kkkk zl lxCv
z

−=          (2.16) 

with )(k
xx llD , )(kQ  and )(kR  as their 

measurement variance matrices, respectively, in 
which the state vector is extended to include the 
process noise vector )(kw  being estimated together 
with )(kx .   

In seeking for a Least Squares solution for 
)(kx  and )(kw , the cost function is constructed  

)()()()()()(          

)()()()(:
11

1

kkkkkk

kkkkg
T
z

T

T

ww zll

llll

vRvvQv

vDvmin
xxxx

−−

−

+

+=
(2.17) 

In (2.14), (2.15) and (2.16), there are (n + m) states 
and (n + m +p) measurements. The number of the 
redundant measurements remains unchanged, 
namely, p. It is not in question about the identity of  

)(kx  derived after (2.17) and the one in (2.3) [Wang, 
1997]. The beauty of this formulation lies in the 
feasibility for the direct analysis of the three original 
error sources at any epoch k. Especially, it allows for 
reliability analysis in discrete Kalman filtering 
[Wang, 1997, 2009]. For the benefit of the 
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presentation in next section, the outcome from this 
alternate formulation is summarized below: 

1) The solution of the state vector 
First, equations (2.3) – (2.9) in Section 2.2 remain 
unchanged to form the basis of the solution. 
Alternatively, (2.3) is also given as follows  

)]}()()()[()(){(  
)()()()/(

kkkkkk
kkkkk

wz

wx

lBlClK
lBlx

x −−+
+=     (2.18) 

Importantly, the process noise vector is estimated by  

)()()1/()()(     

)()(ˆ
1

0

kkkkkk
kk

xx
T dKDBQ

ww
−+

=
−

         (2.19) 

with its variance matrix 

)()()()()()()(  

)()(
1 kkkkkkk

kk

dd
TT QBCDCBQ

QDww
−−

=     (2.20) 

and its covariance matrix with the estimated state 
vector 

)()()()()()1/(  

)()()(
1 kkkkkkk

kkk

dd
T

xx

xw

QBCDCD
QBD

−−−

=
  (2.21) 

2) The residual vectors 

)()()1/()()( 1 kkkkkk xxll xxx
dGDDvl −= −           (2.22) 

)()()1/()()()( 1 kkkkkkk xx
T

w dGDBQv −= −      (2.23) 

)(])()([)( kkkk dIGCvz −=          (2.24) 

with their variance matrices 
)()()1()()()( 1 kkkkkk dd

T
xx xxxxll llllvv DCDCDD −= −   (2.25) 

)()()()()()()()( 1 kkkkkkkk dd
TT

ww
QBCDCBQD vv

−=  (2.26) 

)()]()([)( kkkk
zz

RGCID vv −=          (2.27) 

3) The redundancy contributions in measurement 
groups corresponding to (2.11), (2.12) and 2.2): 

)]()()()()1()([)( 1 kkkkkktrkr dd
TT

xxlx
CDCADA −−= (2.28) 

)()()1()()()([)( 1 kkkkkktrkr dd
TT

lw
BCDCBQ −= −    (2.29) 

)]()([)( kktrkrz GCI −=                        (2.30) 

For the entire system either after (2.1) and (2.2), 
or after (2.11), (2.12) and (2.2), the total redundancy 
number at epoch k satisfies [Wang, 1997; 2009, 
2021; etc] 

)()()()()( kpkrkrkrkr zll wx
=++=          (2.31) 

wherein )(kp  is the number of the real 
measurements or the dimension of )(kz . 

4) The individual redundancy indexes 
In practice, )(kQ  and )(kR  are commonly diagonal 
so that the individual redundancy indexes in 
components for the process noise vector are 

iidd
TT

w kkkkkkkr
i

)]()()()()()([)( 1 BCDCBQ −=  

))( ..., ,2 ,1( kmi =                       (2.32) 

and for the measurement vector 

iiz kkkr
i

)]()([)( GCI −=   ))(,...,,( kpi 21=     (2.33) 

Indeed, as )(k
xxllD  in (2.11) is not a diagonal matrix 

in general, no individual redundancy indexes in 
components become meaningful here for )(kxl .  

5) The variance of unit weight (the variance factor) 
)(/)()()()(ˆ 12

0 kpkkkk dd
T dDd −=σ                      (2.34) 

or 
++= −− )()()()()()([)(ˆ 112

0 kkkkkkk
ww

TT
llllll vQvvDv

xxxx
σ  

)(/)]()()(             1 kpkkkT
zz vRv −+                       (2.35) 

6) The posteriori variance matrix of the estimated 
state vector 

)()(ˆ)(ˆ kkk xxxx DD 2
0σ=                       (2.36) 

which directly reflects the latest available residuals 
due to the modeling and measurement errors. For the 
usage in (2.36), one can apply the epochwise 
variance factor as in (2.34) or (2.35), a regional 
variance factor, i.e., an average over a specific time 
period, or even a global variance factor from the 
entire data period [Wang, 1997, 2009; Wang et al, 
2021]. However, it is noticed that plenty of the 
applications with applying Kalman filter have 
inappropriately considered (2.4), instead of (2.36), 
as their posteriori state variance matrix.   

Refer to [Wang, 1997, 2008, 2009; Caspary and 
Wang, 1998; Wang et al, 2021] for more details 
about this alternate formulation and its advantages 
for error analysis in discrete Kalman filtering. 

3. GENERIC FORMULATION OF DISCRETE 
KALMAN FILTER WITH CONSTRAINTS 

This section provides readers with our original 
development of a generic formula set, which 
meaningfully serves as an innovative framework for 
comprehensive error analysis in discrete Kalman 
filtering with constraints in parallel with the one 
summarized in Section 2.3, and also describes their 
connections. In this work, the constraints are 
restricted to the equality constraints, 

3.1 The Functional and Stochastic Models 

Upon the models of the standard Kalman filter 
defined in Section 2.1, a Kalman filter with 
constraints indicates that there exist the following 
additional constraints among the states 

ohxH =−)()( kkT                         (3.1) 

wherein )(kH  is a n×h-dimensional coefficient 
matrix and hktr =)]([H  ( nh < ), which is either 
originally linear or linearized from nonlinear 
constraints and h  is the h-dimensional constant 
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vector. Hence, the equations (2.1), (2.2) and (3.1) 
together represent the system model, the 
measurement model, and the constraints among the 
states in discrete Kalman filtering.   

In analogy to the alternate formulation 
summarized in Section 2.3, the Principle of Least 
Squares is straightforwardly applied epochwise 
hereinafter to result the solution for discrete Kalman 
filter with constraints. To demonstrate the flexibility 
in dealing with the available functional and 
stochastic models, three different ways that deliver 
an identical estimate of the state vector )(kx  are 
introduced in Sections 3.2, 3.3 and 3.4, respectively, 
of which Section 3.4 is the focus of attention of this 
manuscript. 

3.2 Approach One 

The measurement equation system is here 
structured as follows  
1) a pseudo-measurement vector )(kxl′ is given 

directly by using the solution of the state vector 
from the standard Kalman filter (without any 
constraints) as in Section 2, which establishes the 
following residual equation: 

)()()( kkk xhx lxv ′−=                                      (3.2) 

wherein )(khx  is the state estimate subject to 
the constraints as in (3.1) while the pseudo-
measurement vector and its variance matrix are:   

)/()( kkkx xl =′     (refer to (2.3))                  (3.3)   

)()( kk
xx xxll DD =′′  (refer to (2.4))         (3.4) 

2) a group of h linear constraints as in (3.1) are 
applied. 
The equations (3.2) and (3.1) together compose 

the model in the form of indirect observations with 
constraints. So, the Principle of Least Squares is 
applied to the following cost function at epoch k: 

])()([2)()()(     

))(),(/)((:
1 hxHkvDv

zlxmin

llll −+

=′

′
−
′′′ kkkkk

kkkg

h
TT

h
T

xh

xxxx

(3.5) 

which was called the Mean Square Method in 
[Simon and Chia, 2000]. To seek for the (minimum) 
extreme value of (3.5), its first order derivative with 
respect to )(khx  is assigned to 0: 

))(),(/)((
)(

kkkg
k xh

h

zlx
x

′
∂
∂

oHkDvl =+= −
′ )(2)/()(2       1 kkkk TT

hxx
T
x

          (3.6) 

which yields  

olDkHxD =′−+ −− )()()()()()( 11 kkkkkk xxxhhxx     (3.7) 

The equations (3.7) and (3.1) together compose a 
normal equation system: 







 ′=













 −−

h
lD

k
x

OH
HD )()/()(

)(
)()/( 11 kkkk

k
kkk xxx

h

h
T

xx  

                                                                            (3.8) 
which possesses two unknown parameter vectors: 
the state vector )(khx  and the Lagrange multiplier 

vector )(khk  brought by the constraints. 

To solve (3.8), one can first derive )(khx  from the 
first equation:  

)()()/()/(          
)]()()()/()[()( 1

kkkkkk
kkkkkkk

hxx

hxxxxxh

kHDx
kHlDDx

−=
−′= −

   (3.9) 

wherein )/( kkx   is the minimum variance estimate 
of the state vector given in (2.3). Substituting (3.9) 
into the second equation of (3.8) delivers the 
Lagrange multiplier vector )(khk : 

])/()()[()( 1 hxHNk −= − kkkkk T
hhh                  (3.10) 

where a helping matrix )(khhN  is defined to 
simplify the notation  

)()/()()( kkkkk xx
T

hh HDHN =                      (3.11) 

The substitution of (3.10) into  (3.9) gives )(khx  

})/()(){()()/(

)/()(ˆ
1 hxHNHD

xx
−−

=
− kkkkkkk

kkk
T

hhxx

h  (3.12) 

in which the overhead symbol ^ is commonly 
ignored wherever no confusion may occur.   

The associated variance matrix with )(khx  is 
derived based on (3.12): 

)/()()()()/(   

)/()(
1 kkkkkkk

kkk

xx
T

hhxx

xxhh

DHNHD

DD xx

−−

=
    (3.13) 

wherein )/( kkxxD  is the variance matrix of 
)/( kkx  in (2.4). 

This solution is indeed identical with the one 
after Maximum Probability Method and Projection 
Method presented in Simon and Chia [2000].  

3.3 Approach Two  

Differently from Approach One in Section 3.2, 
the measurement equation system is here structured 
as follows  
1) A pseudo-measurement vector )(kxl ′′ is defined 

by the predicted state vector )1/( −kkx  from 

1−kt  to kt  (i.e., time update) from the standard 
Kalman filter as in Section 2, which establishes 
the following residual equation: 

)()()( kkk xhx
lxvl ′′−=′′         (3.14) 

with 
)1()()1/()( −=−=′′ kkkkkx xAxl              (3.15) 
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)()()()()1()( 

)1/()(

kkkkkk

kkk
TT

xx

BQBADA

DD

xx

xxll

+−=

−=′′′′ (3.16) 

2) A measurement vector )(kzl is adapted from the 

real measurement vector )(kz  at kt  as in (2.2), 
which yields the following residual equation: 

)()()()()( kkkkk hzl zlxCvv
z

−==             (3.17) 

with 
)()( kkz zl =                       (3.18) 

)()( kk RD
zz ll =         (3.19) 

wherein )(kC  is the same as in (2.2).  

3) a group of h linear constraints as in (3.1) are 
applied, wherein h (bold and italic) is the 
constant vector in the constraints.  
Now, the equations (3.14), (3.17) and (3.1) 

together compose another model in the form of 
indirect observations with constraints at epoch k. 
Accordingly, the cost function for applying the 
Principle of Least Squares is as below: 

)()()()()()(   

))(),(/)((:min
11 kkkkkk

kkkg

zzxx

TT
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llllll
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vRvvDv
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xx

−
′′

−
′′′′′′ +=
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)]()()()[(2      kkkk h
TT

h hxHk −+                 (3.20) 

The same as with (3.5), the 1st order derivative of 
(3.20) with respect to )(kx  is assigned to 0: 
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which gives 

ozRClD

kHxCRCD

xll

ll

xx

xx

=−−

++
−−

−−

)()()()()(

)()()}()()()({
11

11

kkkkk

kkkkkk
T

hh
T

 (3.22) 

From (3.22) and (3.1), the normal equation 
system goes as follows: 








 +′′
=















 +

−−
′′′′

−−
′′′′

h
zRClD

k
x

OH
HCRCD

xll

ll

xx

xx

)()()()()(

)(
)(

)()()()()(

11

11

kkkkk

k
k

kkkkk

T

h

h
T

T

(3.23) 

which is identical to (3.8) because it can be 
proved 
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This implies that (3.8) and (3.23) result in the 
identical solution for the state vector. 

3.4 Approach Three 

Furthermore, differently from Approaches One 
and Two, Approach Three here develops the 
proposed framework for comprehensive error 
analysis in discrete Kalman filtering with constraints, 
which is particularly an extension of (2.14) – (2.16) 
by adding the constraints among the states. The 
measurement equation system is hereto structured as 
follows: 
1) The first pseudo-measurement vector )(kxl  is 

here defined by the predicted state vector 
exclusive of the effect of the process noise vector. 
Its residual equation is (refer to (2.14): 

)()()()()( kkkkk hhx xl lwBxv −−=           (3.25) 

)1()()( −= kkk xAlx                                   (3.26) 

)()1()()( kkkk TADAD xxll xx
−=                 (3.27) 

2) The second pseudo-measurement vector )(kwl is 
defined by the process noise vector, which gives 
the residual equation below (refer to (2.15):  
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)()( 0 kkw wl =   (usually ow =)(0 k )         (3.29) 

)()( kk
wwll QD =            (3.30) 

3) A measurement vector )(kzl  is adapted from the 

real measurement vector )(kz  at kt  as in (2.2). 
So, the residual equation is as (3.17) alongside 
with (3.18) and (3.19).   

4) a group of h linear or linearized constraints are 
as in (3.1).  
Essentially, one must give one’s attention to 

(3.26), )1/()( −≠ kkk xlx  because 
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Writing four equations (3.25), (3.28), (3.17), and 
(3.1) together gives the entire residual equation 
system with constraints as below: 
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(3.32) 

alongside with the blockwise covariance matrix of 
three independent measurement vectors )(kxl , 

)(kwl  and )(kz  as in (3.27), (3.30), (3.19). The 
main difference of (3.32) from Approach One in 
Section 3.2 and Approach Two in Section 3.3 lies in 
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directly modeling three originally independent 
random vectors as the measurement vectors. 
Accordingly, the unknown parameters have been 
extended from )(khx  to both of )(khx  and )(khw , 
This modeling strategy allows estimating the process 
noise vector epochwise and also the residual vector 
of )(kwl , which has been of scarcely any mention in 
literature, except initially modeled in Wang [1997].  

Frankly, (3.32) allows specifying the following 
cost function for applying the Principle of Least 
Squares: 
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which yields two 1st order partial derivatives for 
)(khx  and )(khw , respectively: 
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Together with (3.1), (3.34) and (3.35) build up 
the corresponding normal equation system: 
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Although deducing an explicit solution of (3.36) 
affirmatively seems complicated because the 
coefficient matrix of (3.36) is in the form of a 3×3 
partitioned block matrix, we have successfully 
accomplished the algorithmic formulation of the 
solution for )(khx , )(khw  and )(khk  inclusive of 
some further relevant contents, e.g., the residual 
vectors and redundancy contribution and redundant 
indexes of the measurements etc.   

Before the solution is delivered, the equivalency 
of (3.36) to (3.8) and (3.23) is first proved. With the 
2nd equation in (3.36), three specifics need readers’ 
attention for the benefit of further derivation:  
i) The coefficient matrix of )(khx  in the 1st 

equation of (3.26) is )/(1 kkxx
−D  (refer to (3.24)). 

ii) The inverse of the coefficient matrix of 
)(khw  in the 2nd equation of (3.26) gives 
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iii)  Solving for )(khw  from the 2nd equation in (3.26) 
gives 

)()()(              

)]()()1/()()()([)(
1

1

kkk
kkkkkkkk

h
T

xx
T

h

xDB
QBDBQQw

xxll
−

−

⋅

⋅−−=

  
)]()()()()([   

)]()()1/()()()([
11

1

kkkkk
kkkkkkk

w
T

xx
T

lQlDB
QBDBQQ

xll xx

−−

−

+−⋅

⋅−−+ (3.38) 

Substituting (3.38) into the 1st equation of (3.36) 
eliminates )(khw  
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which proved that (3.36) is equivalent to (3.8) and 
(3.23) for )(khx  and )(khk  as  
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3.5 Solution  

Now, without providing the lengthy intermediate 
steps, the solution of )(khx , )(khw  and )(khk  is 
directly given below: 
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with the variance–covariance matrices of )(khx  and 

)(khw : 
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3.6 Solutions with and without Constraints 

The solution of )(khx  and )(khw  in discrete 
Kalman filtering with constraints is connected to the 
solution of )(kx  and )(kw  (without constraints) 
given in Section 2.3 as follows:   
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This group of formulas provides the opportunity 
to obtain the solution with constraints directly upon 
the solution from the standard Kalman filtering 
described in Section 2. A hard-won advantage of the 
solution expressions from (3.47) to (3.51) lies in first 
obtaining the solution after  (2.3) (or (2.18)), (2.19), 
(2.4), (2.20) and (2.21) without considering the 
constraints and then utilizing )/( kkx  to linearize 
the constraints, when they are nonlinear, and apply 
them towards the solution with constraints.     

3.7 Residual Vectors and their Variance 
Matrices 

For error analysis in Kalman filtering, )(k
hxv , 

)(k
hwv  (when ow =)(0 k ) and )(k

hzv  with their 
associated covariance matrices are further derived 
below. 

In general, they can directly be calculated 
according to (3.32) or individually after (3.25), (3.28) 
and (3.17). However, they are further detailed. 

First, with the residual vector )(kh
xv  of )(kxl  in 

(3.25), substituting (3.41) and (3.42) or (3.47) and 
(3.48) into (3.25) gives   
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Based on (2.22), (3.52) is further simplified to 
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Second, with the residual vector )(k
hwv  of )(kwl  

in (3.28), the substitution of (3.42) or (3.48) yields 
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After (2.23), (3.54) is further reformed to 
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Because the initial value of )(kwl  is usually 

assumed to be: ow =)(0 k  in practice, (3.54) 
becomes 

)/()1/()()()()( 1 kkkkkkkk xxxx
Th

lw
DDBQwv −−= −  

                ])/()()[()( 1 hxHNH −⋅ − kkkkk T
hh    (3.56) 

Third, with the residual vector )(kh
zv  of =)(kzl

)(kz , substituting (3.41) or (3.47) into (3.17) 
delivers: 
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According to (2.24), (3.58) is simplified to  
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The covariance matrix of the residual vectors 
for each of )(k

hxv , )(k
hwv  and )(k

hzv  are derived as 
follows: 
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(1) )(kh
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h
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vvD  is derived by applying the law of 

variance propagation to (3.52a)   
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as ODx =)(kd  in (2.10). Under the consideration of 
(2.25), (3.60) becomes 
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law of variance propagation to (3.54a) :  
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and further, based on (2.26), 
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(3) )(kh
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variance propagation to (3.58)   
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and further according to (2.24), 

)()/()()()(               

)/()()()(
1 kkkkkk

kkkkk
T

xx
T

hh

xxzzh
z

h
z

CDHNH

DCDD vvvv

−⋅

+=
(3.65) 

3.8 Redundancy Contribution of Measurements 

There are two levels of redundancy contribution: 
the total redundancy contribution of )(kxl , )(kwl  
and )(kz  together as well as the subtotal redundancy 
contribution of each of the groups, and the 
individual redundant indexes associated with each 
element in a group of the independent measurements, 
here specifically )(kwl  and )(kz  because )(kQ  and 

)(kR  are commonly diagonal in practice. The 
following discusses the redundancy contributions of 

)(kxl , )(kwl  and )(kzl  one by one:  

(1) The redundancy contribution )(kr
xl

 of )(kxl  

)()()/()1/()({   

)}()()()({

)}()({)(

11

1

1

kkkkkkktr

kkkktr

kktrkr

hhxxxxll

dd
T

ll

l

xx

xx

h
x

h
xx

−−

−

−

−+

=

=

NHDDD

CDCD

DD
xlxlvv

           

          )}1/()/()( 1 −⋅ − kkkkk xxxx
T DDH             (3.66) 

However, no individual redundant indexes will 
have the usual meaning for )(kxl  as its variance 
matrix of =)(k
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)1,()1()1,( −−− kkkkk TADA xx will not be 
possibly diagonal in reality. 
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Besides, the individual redundant index 
associated with each component in )(kwl , when 

)(kQ is diagonal, is derived as follows 
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(3) The redundancy contribution  )(kr
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for )(kzl  (or )(kz ) 
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in which the first item is 
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When )(kR  is diagonal, the individual redundant 
index with each component in )(kzl  is 
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and further 
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Finally, the total redundancy contribution of the 
three independent observation vectors together at 
epoch k, i.e., total redundancy number of )(kxl , 

)(kwl  and )(kzl  together is equal to 

)()()()( krkrkrkr zll wx
++=                            (3.74) 

with the following specific detail, 
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It can be proved that the total redundant index at 
epoch k is equal to 
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which means 
)()()()()()( khkpkrkrkrkr zll wx

+=++=  (3.76) 

with )(kp  and )(kh  being the number of the 
measurements in )(kz  and the number of the 
constraints in (3.1). 

3.9 Other Aspects 

In addition, several algorithmic developments 
such as test statistics, variance factors and variance 
component estimation etc. may be further conducted, 
in analogy to the work in [Wang, 1997, 2008, 2009 
etc.] and are excluded here due to the space 
restriction, except the following essential remark 
about the variance of unit weight: 

(i) The variance of unit weight for Section 2 
(standard discrete Kalman filter): the one in (2.34) 
is identical to the one in (2.35). 

(ii) The variance of unit weight for Section 3 
(discrete Kalman filter with constraints): 
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4. Algorithm in the Form of Extended Kalman 
Filter with Constraints 

This section frames the relevant formulas in the 
form of Extended Kalman filter in accordance with 
the functional model defined in Section 3.1, but 
having them (i.e., (2.1), (2.2) and (3.1)) nonlinear. 

The system model, the measurement model and 
constraint model appear nonlinear as follows: 

)1()1,()),1(()( −−+−= kkkkkk wBxAx        (4.1) 

)()),(()( kkkk ∆+= xCz                         (4.2) 

ohxH =−)),(( kk                            (4.3) 

As for the variance propagation, three Jacobian 
matrices are derived here, 
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which is with respect to the estimated state vector )1/1( −− kkx  at 1−kt ,
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which is with respect to the predicted state vector )1/( −kkx  through the time update from 1−kt  to kt , and 
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which is with respect to the estimated state vector )(kx  through the measurement update before the constraints 

are applied at kt . 

The following gives the algorithm in the form of 
Extended Kalman filter by referring to Sections 3.4 
and 3.5: 

1) THE MEASUREMENT MODEL 

The predicted state vector exclusive of the effect 
from the process noise vector: 

)()1()1,()()( kkkkkk hhx xlwBxv −−−−=      (3.25) 

)1,),1(()( −−= kkkk hxAlx  (vs. (3.26))      (4.7) 

)1,()1()1,()( −−−= kkkkkk TADAD xxll xx
     (3.27) 

The process noise vector as a group of the pseudo-
measurements: the same as (3.28), (3.29) and (3.30). 
A group of the measurements from the 
measurement vector )(kz at kt :  
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)()( kkz zl =                         (3.18) 
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A group of the constraints on the states: 

ohxH =−)),(( kkh  (vs. (3.1))                    (4.9) 

2) THE SOLUTION 

The state vector, the process noise vector and the 
Lagrange multiplier vector: 
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])),/(()[()( 1 hxHNk −= − kkkkk hhh                  (4.12) 

wherein 

)()()1/()/( kkkkkk dKxx +−=                 (4.13) 

)()()1,),1(()1/( 0 kkkkkkk h wBxAx +−−=− (4.14) 

)()()1,),1(()()( 0 kkkkkkk h wBxAzd −−−−= (4.15) 

The var-covariance matrices of the state vector and 
the process noise vector: the same as (3.49), (3.50) 
and (3.51). 

3) THE MEASUREMENT RESIDUALS 

The residual vectors: 
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The variance matrices of the residual vectors: are 
the same as (3.60) – (3.65). 

4) THE REDUNDANCY CONTRIBUTION: 

The same as in Section 3.8. 

For the convenience of practical implementation and 
better understanding of the proposed framework, an 
algorithmic flow is suggested in Fig. 4.1. 

5. CONCLUDING REMARKS  

This manuscript exhibited flexible algorithmic 
formulation for Kalman filtering with equality 
constraints on the system states, and practically 
developed an analytic framework for comprehensive 
error analysis accordingly. Specifically, this 
manuscript has: 

(a) Developed a unique formula set as an innovative 
framework on the base of the three independent 
error sources that influence the system state 
estimate (Section 3.1-3.6); 
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Fig. 4.1 an algorithmic flow of EKF with Constraints 

(b) Specifically introduced the equation for the 
residual vector of the process noise vector , as 
well as their covariance matrices (Section 3.6); 

(c) Made the reliability analysis feasible through 
parametrically introducing the redundancy 
contribution for the predicted state vector, 
process noise vector, and measurement vector, 
and the individual redundant indexes for the 
elements in the process noise and measurement 
vectors under the assumption of diagonal Q(k) 
and R(k) (Section 3.7); and 

(d) Pointed out its essential potentials how further 
algorithmic extension may be accomplished 
from the proposed formulation (Sections 3.9). 

This work took an important step towards a 
standardized generic approach to performing 
Kalman filtering with equality constraints that 
enables comprehensive and rigorous error analysis, 
which is particularly important for high accuracy 
applications, for instance, the centimeter level 
kinematic positioning and navigation using GNSS 
and/or multisensor-integrated systems in the modern 
direct-georeferencing technology, autonomous 
vehicle driving, and other robotic applications etc., 
wherever it is important to examine the sources of 
any deviations in the estimated system states. The 
issue of comprehensive error analysis in Kalman 
filtering has been addressed previously [Wang, 1997; 
Caspary and Wang, 1998; Wang, et al, 2021; etc.], 
but not yet in the context of a Kalman filter with 
equality constraints. It is the authors’ hope that 
comprehensive error analysis becomes a necessary 
part of the estimation process in the constrained 
Kalman filtering as a result of this work. 
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Abstract: Mapping is critical for an autonomous 
robot performing tasks in an unknown environment, 
which provides the environment information for task 
planning. Inspired by the presence of cells in the 
mammals’ brain that help mammals rapidly cognize 
the surroundings, considering visual ambiguity that 
may be happened indoors, an orientation-independent 
boundary cell model based on the boundary vector 
cells in the brain is proposed to tackle the obstacle 
information in the environment, and it is fused into a 
metric-topological map to represent the structural 
information which increases the functionality of the 
map. The simulation results show that the expression 
of boundaries or obstacles in the environment can be 
obtained through the firing rate of boundary cells, 
which enhances the information content of the map. 
Meanwhile, the algorithm can build a consistent 
representation of the environment with sensor noise 
and achieves a root mean square error of 11.42cm in 
a 16m×17m indoor environment, effectively 
calibrating the sensor drift error, and ensuring the 
accuracy of the map. 

Keywords: bio-inspired; mapping; 
metric-topological map; indoor robots 

1 Introduction 

In recent years, robots have been widely used in 
a variety of industries to execute tasks autonomously. 
Simultaneous localization and mapping (SLAM) is a 
critical technology for robots working in an unknown 
environment, which allows the robot to map the 

environment while running and then utilize the built 
map as the prior information for navigation. Thus, 
constructing a suitable map is significant considering 
the intention of the tasks and the working 
environment. As humans and many animals have the 
nature to explore and navigate in new environments, 
researchers are inspired to imitate this mechanism in 
robotics to enhance their mapping and cognitive 
ability. 

The spatial cognition mechanism in the 
mammal’s brain has been researched by 
neuroscientists for decades. Early in 1971, O’Keefe 
and Dostrovsky found that some cells in the rodent’s 
hippocampus are active only when the rat visit a 
specific location, which serves as an internal 
cognitive map, named place cells [1]. Based on this 
discovery, more spatial cells are founded. In the 
entorhinal cortex, a kind of neuron is observed 
activating at multiple specific locations which form a 
hexagonal grid in space [2]. These grid cells integrate 
the rat's self-motion information and provide the path 
integration function of brain navigation, while head 
direction cells respond to the movement of the rat's 
head facing, improving an animal's ability to solve 
spatial problems [3]. With the help of the directional 
information, the boundary vector cells which produce 
a high firing rate when the rat reaches the boundary 
of the test environment can generate 
direction-independent activity [4]. Through the 
coordinated activity of neural circuits between these 
cells, the positioning system in the brain is formed. 
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Current research on bio-inspired map 
construction methods can be divided into two 
groups: one group uses the place cells to code the 
whole environment which means that each site 
corresponds to a specific neuron. Arleo proposed a 
computational model based on head direction cells 
and place cells to achieve navigation in a 
two-dimensional small-scale environment [5]. Tian 
used competitive Hebbian learning to select grid 
cell subsets to generate place cell population 
activities, thereby obtaining a robot exploration map 
[6]. Instead of using the place cells only, Zhou 
proposed a new place cell representation under 
multi-information perception generated by a 
weighted fusion of visual-related and grid cells [7]. 
Tang established a cognitive map based on the 
functioning of the hippocampus and the entorhinal 
cortex [8]. Although these works have high biology 
fidelity, the complexity and required resources 
could increase greatly when working in larger 
environments, while the other group builds the map 
using a hybrid map model based on the episodic 
memory mechanism, which can be utilized in a 
large area. Milford proposed a metric-topological 
experience map that records the activity of cells in a 
representative place as an experience so that the 
map is more extensible [9]–[11]. In this system, 
because visual information is the only source of 
allothetic cues, many improvements to the visual 
system have been done to increase the reliability of 
the map when facing visual ambiguity. The 
FAB-MAP is introduced to deal with the changes 
over time [12]. In [13], an appearance-based 
frequency-tuned model is proposed, which converts 
visual input into saliency maps to reduce the 
influence of light. To avoid perceptual aliasing, a 
dynamic growing self-organizing map based on 
direction and feature parameters is introduced and 
gains a good performance in the office environment 
[14]. There are many other sources of information 
used by animals during navigation, such as Zeng 
proposed that local view information and motion 
information were introduced into HD-by-velocity 
cells and GirD-by-velocity cells, and the two types 
of cells were connected and the relocation was 

achieved according to attractor dynamics [15]. 
Based on the self-centered confidence map, Gupta 
generates the current positioning through 
multi-scale confidence superposition [16]. In 
addition, literature [17]-[18] points out that distance 
information extracted from tactile sense and audio 
can also be used for localization. However, there are 
a few types of research on using structural 
information. In BatSLAM, visual templates are 
replaced by sonar fingerprints [19]. But in their 
experiment, using only one type of source still 
could suffer from ambiguity. For example, the 
lidar-based method can hardly distinguish repetitive 
environments with similar structures [20]. In 
ViTa-SLAM, the local tactile information is saved 
as a histogram template and a slope distribution 
array in the node [21], but it is hard to extract the 
global structure from the map. In this paper, a novel 
cognitive map is proposed to increase the feature 
redundancy and functionality in the indoor visual 
ambiguous environment. An ego-allocentric 
modulation method is proposed to transform the 
egocentric lidar information into the allocentric 
boundary information so that the lidar information 
can be fused into the map in a more biological way 
to provide an absolute reference for the localization 
process. 

The rest of this paper is organized as follows. 
The computational model of navigation cells and 
the problem formulation are both introduced in 
Section 2. The whole mapping system including the 
ego-allocentric modulation and the cognitive 
map-building process is described in Section 3 and 
Section 4. The experimental results are 
demonstrated in Section 5. Finally, the conclusion is 
presented in Section 6. 

2 Preliminaries 

2.1 Pose cells model  

Since the activity of place cells and head 
direction cells indicate the rodent’s pose in the real 
world, a pose cell network is proposed to represent 
the belief of the agent’s current location and 
orientation [22]. To simulate the activity of the 
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above two cells, the pose cell network uses a 
three-dimensional continuous attractor neural 
network (CANN) which is a recurrent dynamical 
network that is presented to model the space-related 
cells in neuroscience[23]. The CANN consists of a 
group of attractors and the connections between 
them, while the connections’ weights are fixed and 
can be both excitatory and inhibitory. The activation 
of each attractor is continuous ranging from zero to 
one, which indicates the firing rate of the pose cell 
as well as the belief of the robot’s pose in this paper, 
and it is operated by the self-motion cues, and the 
activation changes from other connected navigation 
cells. 

The three dimensions of the pose cell network 
represent the plane coordinates (x, y) and the robot 
head facing θ , respectively. Due to the attractor 
dynamics of CANN, the activity in the pose cell 
network will converge to a single cluster, which is 
named the activity packet or energy packet. Thus, 
the attractor dynamics of the pose cell network can 
be represented as  

, , , , , ,
0 0 0

txy xy hs s s

x y i j k a b c ext
i j k

P P Iθ e j′ ′ ′
= = =

∆ = − +∑∑∑        (1) 

where , ,i j kP  and , ,x yP θ′ ′ ′∆  denote the activity level 

and the activation change of the corresponding cell, 
while the subscripts indicate the cell’s location in 

the network. xys  and ths  represent the side length 

of the CANN. , ,a b cε  is the fixed connection weight 

matrix between pose cells which activates 
neighboring neurons and suppresses the distant cells, 
while constant ϕ  serves as the global inhibition in 
the network. Because the pose cell also connects 

with other navigation cells, extI  is introduced to 

represent the external excitatory input. As the 
internal connection weight is related to cells’ 
relative distance, the matrix is given by 

2 2 2
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2 2 2

( )exp exp

( )          exp exp

a b c exc exc
p d

inh inh
p d

a b c
k k

a b c
k k

e
   +

= − −       
   +

− − −       

       (2) 

where kp and kd are the variance constants, The 
inhibitory variance kinh is larger than the excitatory 
variance kexc, forming the Mexican hat function. 
And the indices a, b and c are the distances between 
cells in different dimensions. 

The activity packet in the network can be 
shifted by self-motion cues during path integration 
which is analog to the dead reckoning in a robotic 
system. If the self-motion signal only has the 
translation velocity, the activity packet would move 
within the x-y plane; If the angular velocity is not 
zero, the packet would shift along the θ axis. The 
magnitude of shift depends on the translation 
velocity v and angular velocity ω , which is 
calculated as follows: 

cos , coso x f x ox k v x k v xδ θ δ θ δ= = −      (3) 

sin , sino y f y oy k v y k v yδ θ δ θ δ = = −     (4) 

,o f ok kθ θδθ ω δθ ω δθ= = −             (5) 

 Here, x    is a floor function. xk , yk , and 

kθ  are the path integral constants. Thus, oxδ  and 

fxδ represent the integral and fractional part of the 

shift size along x-axes, respectively. The path 
integration process in the pose cell network can be 
expressed as follow:  
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, ,i j kα  is a residual component that is spread over a 

2 2 2× ×  cube to quantify the effect of the grid. 

2.2 Boundary vector cells model 

The firing rate of boundary vector cells is 
independent of the head direction, which means the 
receptive field of the cell is a specific distance and 
allocentric direction (such as south or east) in the 
world frame. Thus, the computational model of the 
i-th boundary vector cell’s firing rate is as follows : 

( , )i if g rδ θ δθ=                         (9) 

2 2

2

2 2

2

exp[ ( ) / 2 ( )]( , )
2 ( )

exp[ ( ) / 2 ]
               

2

i rad i
i

rad i

i ang

ang

r d dg r
d
σθ

pσ

θ φ σ

pσ

− −
∝

− −
×

         (10) 

 Here, ( ),i id φ  is the receptive field of the 

cell, while ( , )r θ  denotes the location of boundary 

section in the polar coordinate, supposing the rodent 

is in the origin of the coordinate system. radσ  and 

angσ  are constant variances of distance and 

direction respectively, and δ  is the impulse 
function. Fig.1 shows the relationship between the 
boundary vector cell’s receptive field and the firing 
rate. 

Fig. 1  The boundary vector cell model[4] 

2.3 Local view cells model 

The local view cells model is an array of cells 
that record the visual information during 
experiments. The cell’s firing rate is related to the 
vision system which converts the visual input into a 
visual template and compares it with existing 

templates. The comparison results, including the 
absolute difference between input and database as 
well as the shift angle, activate the local view cell 
according to the index of templates. 

2.4 Problem formulation 

In mammals’ brains, the activity patterns of 
those navigation cells can generate episodic 
memory and are served as a cognitive map. In this 
paper, we refer to the experience map that is used in 
RatSLAM[9] to construct a metric-topological map 
that can be utilized for robots. The map can be 
described as a tuple: 

EM ,= E L                            (2) 

where { }1, , ne e= E  is a set of vertices and 

{ }1, , nl l= L  is a set of edges which denote the 

relative positional relationship between linked 

vertices. Each vertex ie  is an experience during 

running, which can then be defined as: 

{ }, , ,i i i i
ie P V B= p                      (3) 

where iP , iV , iB  are the state of pose cells, local 

view cells, and the boundary vector cells, 

respectively. ip  is the location of the experience 

node in the world coordinate system. 

3 System Framework 

To enhance the functionality and enrich the 
information of the map, this paper proposes a 
framework to combine the visual and lidar cues into 
the experience map. As shown in Fig.2, the 
framework consists of three threads for tackling 
different types of inputs. During the mapping 
process, the wheel odometry and onboard sensors 
record the idiothetic and environmental information 
and send them to the corresponding thread. Since 
the visual cues are transferred as images, the region 
of interest which is assigned manually is clipped 

 
Firing Rate   
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from the image and then downsize to calculate 
similarities and the offsets of head direction with 
existing templates using Sum of Absolute 
Differences (SAD). A local view cell is activated 
when there is a difference lower than the threshold, 
which means the robot sees a familiar appearance, 
while a new local view cell can be generated if the 
current appearance has never been seen. Meanwhile, 
the pose cell network is driven by the movement of 
the agent by path integration which has been 

described in section 2. As the lidar information is 
generated in a self-centered coordinate system, we 
propose an egocentric boundary cell model which is 
analog to the parietal window boundary coding 
(PWb) cells[25] found in the mammal’s brain to 
tackle it. The egocentric boundary cells' firing rate 
is then transformed into the allocentric pattern 
through the ego-allocentric modulation utilizing the 
orientation information in the pose cell network.  

Mobile robot

Experience map

Visual cues Lidar cuesSelf-motion cues

Similarity calculatoin

local view cells 
activation

Egocentric boundary 
cells activation

Allocentric boundary 
cells activation

Path integration 

Pose cells activation

 
Fig. 2  The framework of the proposed mapping algorithm (The dotted line indicates the 

transfer of orientation information) 
 

4 Methodology 

4.1 Egocentric boundary cells model and 
ego-allocentric modulation 

During operation, the data received from lidar 
at time t is an array of distances to obstacles 

1{ , , }t t tnl l= l  while each til  corresponding to a 

fixed angle which takes the agent’s orientation as 
the positive of the x-axis. Therefore, the structural 
information provided by LiDAR is self-centered. 
The egocentric boundary cells model is constructed 
to process it and every cell has its receptive field 

( ),ρ θ  which responds to the boundary section 

within it. According to the firing pattern of 

boundary cells, the computational model of a cell’s 
firing rate is described as follows [24]: 

22
1 exp expk k b k b

s
er

r

θ θ rr
rss 

     − −  = − −             

(4) 

where ( ),b bρ θ  is the coordinate of a 

boundary section in the robot coordinate system, 

while ( ),k kρ θ  is the receptive field of the k-th 

egocentric boundary cell [25]. The firing rate of a 
cell is proportional to the distance and orientation of 
the obstacle. 

Inspired by the gain-field circuit in the 
retrosplenial cortex [26], head direction cells 
provide a transformation between egocentric and 
allocentric representation, which is similar to the 
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transformation matrix used in traditional SLAM. 
Instead of directly providing the representation in 
the world coordinate system, the information is 
converted into the allocentric frame. When the robot 
is in the mapping process, the odometer information 
is integrated by the pose cells. Thus, the location of 
the centroid of the activity package in the theta-axis 
denotes the integral result of all historical 
orientations, which can be considered as the current 
robot's head direction. To simulate the function of 
the gain-field circuit, we propose a model to realize 
the ego-allocentric modulation with the help of the 
head direction information in the pose cell network 

HDθ . The firing rate of the allocentric boundary cell 

is as follows: 

( )
0

ocN
j i

a e i HD j
i

r r δ θ θ θ
=

= + −∑                (5) 

where iθ  and jθ  are the angular receptive 

field of the i-th egocentric and the j-th allocentric 

cells, respectively. ( )xδ  is the impulse function. 

Fig.3 shows the results of ego-allocentric 
modulation. According to the firing rate of 
head-oriented cells, the conversion from egocentric 
to allocentric firing rate is realized. 

 
egocentric            allocentric               egocentric            allocentric 
             (a) (b) 

Fig. 3  Results of ego-allocentric modulation 
(a) The robot is in a corner and faces northwest. (b) The robot moves towards the north. 

4.2 Experience map building 

In the mapping process, every vertex of the 
map contains the spatial information that the robot 
experienced at this location. Therefore, to save 
resources, an experienced node should be created 
when the perceived information has been largely 
changed, compared to the current node. In this 
paper, we use an experience similarity score S  to 
evaluate whether a node needs to be generated. 
Since the appearance in some places, like a long 
corridors, it’s inadequate to estimate the change 
using only visual cues. Meanwhile, when there is no 
node in the system that can sufficiently describe the 
current experience, it means either the robot is 
distant from the existed nodes or the appearance is 
changed. Thus, the states of pose cells and local 
view cells are applied to determine the score. The 

experience similarity score is calculated as follows: 

V V P PS S Sµ µ= +                        (6) 

where VS  and PS  denotes the similarity between 

the current states of pose cells and local view cells 
and the previous activity patterns preserved in the 

current experience node while Vµ  and Pµ  are 

the weight of corresponding cells. Considering the 
distance influence, the measurement of similarity of 
pose cells’ state is defined as follows: 

0,        2
2 ,  2P

d
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d d
≥

=  − <
                      (7) 
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where are the coordinates of the centroid of the 
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largest activity packet in the pose cell network, 

( )' ' ', ,i i ix y θ  is the pose cell’s location which is 

connected with the currently activated experience 

node ie , and cr  is the distance constant. 

When the system receives external visual cues, 
the corresponding local view cells are activated, and 
the scoring metric of the corresponding local view 
cells is 

0,        
1,        

i curr

V i curr

V
S

V
 ∉

= 
∈

V
V

                 (9) 

where currV  is a set of currently activated local 

view cells, and iV  is the cell that is linked to the 

current experience node. Thus, if the experience 

similarity score is less than the threshold maxS , a 

new experience je  will be created and linked to 

the previously activated experience node. 

{ }, , ,i ij curr curr curr
j maxP V= + ∆p pe B          (10) 

where currP  is the index of the cell with the 
largest activity level in the pose cell population, and 

curr
maxV  is index of the most active local view cell. 

Meanwhile, currB  denotes the population activity 
pattern of allocentric boundary cells, which 
indicates that the firing rates of all cells are 
recorded. The firing rates are originally stored in a 
matrix, but to demonstrate the environmental 
structure intuitively, we transfer the data format as 
an image. In this population snapshot, cells are 
arranged in the polar coordinates based on their 

receptive fields. ij∆p  is a vector to describe the 

movement between the newly created and the 
previous experience nodes, which also means the 

length of the edge ijl  in the experience map.  
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If the robot revisits a place along an exit path, 
information in the edge is updated by averaging the 
odometry data: 

ij ij ij
new old currA B∆ ∆ ∆= ⋅ − ⋅p p p                (12) 
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( ) ( )2ij ij ij
curr old olds d d d∆ = +                (14) 

4.3 Map correction 

In the experience map, each experience node 
not only receives links from other experiences but 
also sends out links to one or more nodes. Therefore, 
the correction of the pose of each node needs to 
integrate the information of all the connected 
experiences. Thus, the implementation of correction 
is as follows 

( ) ( )
1 1

f tN N
i j i ij k i ki

j k
α

= =

 
∆ = − −∆ + − −∆ 

 
∑ ∑p p p p p p p (15) 

where α  is the correction rate constant, fN  is 

the number of links from experience ie  to other 

experiences, and tN  is the number of links from 

other experiences to experience ie . The correction 

of the map is iteratively applied during the 
operation, making the position of nodes in the map 
gradually approach a distribution that minimizes the 
average error of the trajectory. As a result, links 
between nodes also need to be updated to align with 
the change in orientation 
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5 Experiments 

5.1 Experimental settings and criteria 

The dataset was generated using MATLAB, 
simulating a static two-dimensional indoor 
environment of 16m×17m. The output data of the 
camera, LiDAR, and odometry sensors are 
simulated. The frequency of all sensors is 10Hz. 
Camera data cannot be obtained directly in the 
simulated two-dimensional environment. In this 
paper, the environment is divided into 0.2m×0.2m 
grids, and the robot obtains the output of different 
visual templates in different grids. The motion of 
the robot follows the mode of walking against the 
wall, and its velocity follows the distribution: 

)05.0,1(N (m/s). When the robot runs in a straight 

line along the wall, the velocity follows the 

distribution: )01.0,1(N  (rad/s). When the robot 

reach the corner, the velocity follows the 

distribution: )01.0,1(0982.0 N  (rad/s). The 

LiDAR scanning rate is 400 points per turn, the 

angle increment is fixed to 0 9.  , and the additive 

noise on distance measurement follows the 
distribution: 

( )
( )laser

0,0.005 , 1.5
~

0,0.015 , 1.5
N d

noise
N d

≤
 >

         (27) 

During the operation, the robot moves along 
the same path, and the sensor data is released almost 
at the same time in the experiment, without 
considering the asynchronous problem. 

The generated test environment and data 
format are shown in Fig.4. 

 

 

Fig. 4  The test environment: (left) the visualization of the experimental environment; (right) the 
information of the dataset (the topics of egocues, odom, and vtid submitter to the LiDAR, 
odometry and camera outputs) 

 
Since the coordinates of the built map usually 

is not consistent with the given ground truth 
coordinate system, a transformation matrix S  is 
implied to align them. Therefore, the absolute 
trajectory error (ATE) for the i-th frame is defined 

as follows: 

1
i i i

−=F Q SP                             (28) 

where iP  represents the pose of the robot of the 
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i-th frame estimated by the algorithm while iQ  

represents the ground truth pose of the robot. 
However, when evaluating the performance of an 
algorithm, the root means square error (RMSE) is 
usually used to deal with ATE: 

( ) ( )
1
22

1:
1

1RMSE , trans
m

n i
im =

 ∆ =  
 
∑F F     (29) 

where ∆ represents the time interval and trans(Fi) 
represents the translational part of the absolute 
trajectory error. 

5.2 Results and discussion 

Fig.5 shows the comparison of the experience 
map built by the proposed method, the result of path 
integration in the pose cell network, and the dead 
reckoning trajectory based on the raw odometry 
information. The dead reckoning is suffered from 

sensor noise which leads to a large drift. Thus, it 
cannot form a consistent trajectory, and the 
inconsistency will affect robot localization and task 
performance. Since the path integration of 
self-motion information is conducted in pose cells 
which receive the calibration cues from local view 
cells, it can restore the real trajectory, but there are 
sharp changes in some positions, as shown in Fig.5 
A, when a closed loop is detected. Among them, the 
experience map achieves the best performance in 
consistency, which effectively correct the drift 
caused by sensor noise. As the rotational movement 
leads to a fast change in neurons’ states, more 
experience nodes are created when the angular 
velocity increases. In Fig.5 B, the density of the 
experience node in the up-left corner is much higher 
than in other places. 
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Fig. 5 Comparison of trajectory 
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Fig. 6  Comparison of absolute trajectory error; The index corresponds to the frame number of the camera. 

Since the frequency is fixed, the index is linearly related to the running time 

Fig.6 shows the comparison of the absolute 
trajectory errors of the three algorithms to construct 
the map. In the left column, as the cumulative 
displacement of time increases, the dead reckoning 
error also accumulates. While the path integration 
result has the largest error at first, with the robot’s 
repetitive visits, the performance is close to the 
experience map which realizes the loop-closure and 
calibrates the trajectory. Therefore, the error of the 
proposed method shows a periodic change and 
converges to a size of about 0.1m. Meanwhile, in 
the right column, the errors of the trajectories are 
calculated from the x and y directions, respectively. 
The errors of dead reckoning share the same pattern 
as before, while the errors of the path integration 
and the experience map fluctuate around a value. 
Additionally, in the y-axis direction, the path 
integration result shows two large jumps in the 
interval of (600, 800) and (1000, 2000), which are 
due to the loop correction illustrated in Fig.5 B, 
while the amplitude of the experience map is 
relatively stable. 

Table 1 shows the statistical data of absolute 
trajectory error of experience map, path integration, 
dead reckoning, and ground truth. It can be seen 
that the statistical results of the proposed method 

are better than the others in all three indicators. The 
span of the data set used in the manuscript is about 
4 minutes. If the method runs for a longer period, in 
the case of repeating the same trajectory, the 
odometer drift error, will generate a new experience 
node. When the existing experience node is 
matched again, the displacement error position 
introduced by the new experience node can be 
alleviated by the graph relaxation algorithm. This is 
due to loop-closure testing will be detected from the 
current experience node movement is triggered after 
a certain distance, by adjusting the parameters 
match experience node density and test environment 
after repeated several times track experience node 
has been very intense, under the condition of not 
introducing additional noise, the algorithm will no 
longer cause a new experience, so repeating the 
same motion can guarantee the same trajectory. 
Therefore, the proposed method will still have a 
good ability for map construction for a long time. 

Table 1 Comparison of absolute trajectory error 
 RMSE(m) Mean(m) Median(m) 

Dead-reckoning 0.4067 0.3372 0.3073 
Path integration 0.1340 0.1201 0.1201 
Experience map 0.1142 0.1015 0.0935 
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Fig. 7  The firing rate map of allocentric boundary cells in the mapping process 

Fig.7 shows the firing rate map of allocentric 
boundary cells in the environment during the entire 
robot operation process. In Fig. 7, the x-y plane is 
corresponding to the scaled coordinate system of 
the experience map and the z-axis is the firing rate 
of the cell with 

0 3.firingmap experiencex x= ∗ (m)             (30) 

0 3 5.firingmap experiencey y= ∗ + (m)          (31) 

Its left part shows the firing rate maps of cells with 
different receptive fields and the right column is the 
summation of cells’ firing rates. The upper one 
combines four cells whose receptive fields are:

( )1,0 , ( )1, 2π , ( )1,π , and ( )1,- 2π , while its 

lower part demonstrates the sum of cells with their 

receptive fields of ( )4,0 、 ( )4, 2π 、 ( )4,π  and 

( )4,- 2π . The centers of the receptive fields of the 

corresponding cells shown in Fig.7 A are (1, 0), (1, 
p/2), (1, p) and (1, -p/2), respectively. For a single 
orientation-independent boundary cell, it is 
activated only when there is a barrier in the 
receptive field. Because the robot is set to move 
along the wall, only one cell in this figure is 
activated in most cases. And since the shape of the 
receptive field is a Gaussian distribution, the firing 
rate is possible to be nonzero in the corner when the 

robot is close to the wall in this test. In Fig.7B, the 
upper part shows the population firing rate map by 
superposing the four figures shown in Fig.7A, while 
the lower part is similar to it but the radial receptive 
fields of the cell are changed to be 4. Considering 
that the distance between the trajectory of the robot 
and the boundary is ranging from 0.2m to 2m, the 
cells with a radial receptive field of 1m will obtain 
higher firing rates, so spatial relationships between 
detected obstacles and the robot could be indicated 
from the activation of cells. Thus, according to 
these two population firing rate maps, we can see 
the probability of the barrier’s existence at 1 or 4 
meters away from the robot’s current location. In 
the experiment, multiple boundary cells with 
different receptive fields are used, so a more 
accurate understanding and description of the 
environment structure could be obtained, which 
enhances the information on the map. 

6 Conclusions 

In this paper, aiming at the insufficient features 
in the existing map when working in a visually 
ambiguous environment, an allocentric boundary 
cells model is proposed in this paper, which is 
integrated into the experience map. Allocentric 
boundary cells generate the orientation-independent 
structural information through the head direction 
modulation, and their population activities are fused 
into the experience map which improves the 
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functionality of the map. Simulation shows that the 
proposed model can effectively reflect the boundary 
structure in the environment, and indicates the 
obstacle information on the map. At the same time, 
the algorithm can build a consistent representation 
of the environment with sensor noise and achieves a 
root mean square error of 11.42 cm in an indoor 
environment, which effectively corrects the drift 
and ensures the accuracy of the map. In the future, it 
is considered to build the connection between pose 
cells and every single boundary cell, and explore a 
sparser expression that makes it possible to 
spontaneously recover the firing rate pattern in the 
boundary cells population when activating the 
experience node, without storing a large number of 
connection weights. Meanwhile, it is intended to 
apply the experience map to path planning, so that 
the robot can judge the traversability of the path 
according to the boundary cell’s state. 
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Abstract

Due to reflections or blockages of GNSS satellite 
signals by buildings and infrastructures, urban 
positioning with GNSS is a great challenge. 
Traditional receiver autonomous integrity monitoring 
(RAIM) based methods are insufficient to obtain 
positioning solutions with high accuracy in urban 
canyons where the majority of satellite signals may 
be contaminated by multipath interference and 
non-line-of-sight (NLOS) reception. This thesis will 
focus on the positioning performance improvement 
for pedestrians using lowcost devices in urban 
canyons. With the help of three-dimension (3D) city 
models, GNSS positioning performance can be 
improved by predicting visibility or path delays of 
satellite signals. Shadow matching is a 
3D-mapping-aided (3DMA) approach utilizing SNR 
of satellite signals, which is available in position 
(NMEA format data) and measurement (raw GNSS 
measurement data) domains with a wide range of 
applications. However, the performance of shadow 
matching will be degraded when it fails to distinguish 
the grids of neighboring streets, or when it is affected 
by dynamic interference or 3D model errors. A new 
weighting method, grid weight smoothing and 
clustering (GWSC) method, is proposed to improve 
the performance of grid identification, and 
experiments in Hong Kong streets showed that the 
newly proposed method improved the cross-street 
accuracy of shadow matching from 19.4m to 2.1m 
with a large improvement rate (IR) of 89.2%, 
significantly outperforming the weighted average 
(WA)-based method of 15.3m accuracy, which had an 

IR of 21.1%. NLOS correction-based approach is 
another 3DMA method to improve overall 
positioning performance by simulating reflected 
paths of satellite signals in the measurement domain. 
Diffraction, which is also a type of NLOS, is not 
considered in the conventional reflection model. In 
this study, we apply the radio signal diffraction 
models to develop an improved NLOS 
correction-based approach using a more 
comprehensive reflection model considering more 
types of NLOS, along with the GWSC method in 
weighting. Through experiments, the estimated 
delays were consistent with the received errors, 
where over 95% of signals showed estimated errors 
below 15m. Moreover, the improved approach 
achieved accuracy of 7.4-15m in static tests, and 
11.9m in kinematic tests, compared with up to 86.4m 
by the conventional GNSS method in typical Hong 
Kong streets. The proposed method showed a 
significant IR between 62.7% and 89.7% of 
positioning accuracy in all experiments in urban 
canyons. The computation load with city 3D models 
is very high as it needs to consider different satellite 
constellations at different time. Moreover, many 
cities may not have public 3D models available. In 
this study, a novel approach, named multi-epoch 
offset searching (MEOS), which does not need 3D 
city models, is proposed to mitigate multipath effects. 
With the implementation of measurement smoothing 
and the GWSC method, the new approach can 
provide high-precision positioning solutions for 
pedestrians in urban canyons. It is showed that the 
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approach achieved accuracy of within 9m and 15m in 
several static and kinematic tests, respectively, 
compared to the poor accuracy, up to 57.7m and 
27.5m, from raw GNSS outputs from conventional 
low-cost GNSS devices. The proposed method has 
significant IRs up to 88.3% in static tests, while its IR 
reached 47.6% in kinematic tests. To make the 
positioning system more stable and robust, multiple 
techniques are integrated with sensors existing in the 
smartphones. The integration of GNSS-based 
approaches and pedestrian dead reckoning (PDR) 

technology improves the positioning availability and 
further reduces the positioning errors. Further 
integrating Bluetooth-low-energy (BLE) into the 
system makes the positioning system more flexible 
and effective. Owing to the proposal of BLE-based 
heading estimation and improvement of step 
detection, this integration system achieved a high 
accuracy of within 5m in outdoor and seamless areas. 

Keywords: GNSS, PDR, Pedestrian Navigation  
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Abstract

The underwater multi-sensor integrated 
navigation technology provides guarantees for the 
long-term and large-scale execution of underwater 
vehicle diving missions. In multi-source navigation 
information fusion, observational models and 
navigation sensor noise are spatially and temporally 
complex. It is of great theoretical interest and 
practical value for constructing accurate functional 
and stochastic models. In this paper, we focus on the 
fusion of multi-source navigation information for 
underwater vehicles and work on high-precision 
long-baseline acoustic system filter design, nonlinear 
filtering, colored noise filtering, integrated navigation 
fault-tolerant design, and multi-vehicle coordinated 
navigation. The work and results of this study are as 
follows. 

The paper is divided into seven chapters and is 
structured as follows: 

Chapter 1 introduces the research status of 
common commercial underwater navigation sensors 
at home and abroad, the development status of 
filtering theory under the framework of Bayesian 
filtering and the research status of underwater 
integrated navigation filtering at home and abroad, 
introduces the research content and technical route of 

the paper, and gives the chapter division of the paper.  

Chapter 2 presents the filtering principle for 
underwater multi-sensor integrated navigation. 
Definitions and transformation relations have been 
studied for commonly used underwater integrated 
navigation systems, Strapdown inertial navigation 
systems, Doppler logs, acoustic USBL systems, LBL 
systems, and pressure sensor and measurement error 
models. In this paper, we introduce the underwater 
navigation sensor noise analysis method and its 
mathematical foundations in the framework of 
Bayesian filtering. 

In Chapter 3, sound velocity estimation and 
sound velocity error correction methods in LBL 
acoustic localization are investigated. Considering 
the delayed nature of acoustic propagation, we study 
the acoustic delay of LBL systems and analyze the 
PDOP problem in acoustic localization. The 
underwater carrier navigation filter algorithm is 
designed based on the LBL/INS loose-binding and 
tight-binding modes, and the simulation experiments 
are designed to validate it. 

Section 4 presents the application of the 
Bayesian filtering algorithm to nonlinear systems 
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corresponding to the specific operational context of 
underwater integrated navigation. In this paper, we 
introduce SINS fast alignment problem under large 
misalignment angle, USBL/DVL integrated 
navigation under depth constraint, CKF based 
compact combination algorithm for SINS/USBL, and 
localization problem for nonlinear ranging equations 
when acoustic ranging is short, which are validated 
by simulations and experiments. 

In Section 5, the effect of systematic errors on 
the integrated navigation filter is analyzed and 
colored noise treatments including augmented state 
methods, measurement difference methods, and time 
series analysis methods are introduced. A hierarchical 
adaptive information filter is proposed to separate 
and estimate the system noise parameters. Combining 
simulation experiments of USBL/DVL navigation 
and localization in environments with unknown 
ocean currents with actual measurement experiments, 
the proposed modified adaptive filtering method was 
analyzed and validated to be effective. 

In Chapter 6, fault detection and identification 
methods for underwater integrated navigation are 
studied, and the SINS/USBL/DVL/PG sensor 
refinement model is developed based on Bayesian 
filtering theory and observed features of underwater 

navigation sensors. Based on the interactive 
multi-model filtering principle, we propose an 
adaptive federated interactive filtering design scheme 
for deep-sea towing systems. 

Chapter 7 presents the principles and methods of 
collaborative navigation filtering for underwater 
multi-vehicle applications, including decentralized 
and centralized modes. Based on the Bayesian 
filtering principle, the delay value is estimated using 
the maximum A-posteriori. Motivated by the 
existence of bidirectional ranging or mutual 
localization observations in multi-carrier formation 
networks, and considering the possibility of 
anomalous pilots, we propose a centralized filtering 
algorithm for underwater multi-carrier formation 
based on a weight-selective filtering model. 
Simulation experiments are designed to validate the 
results. 

The summary and outlook sections mainly 
summarize the main research content of this paper, 
point out the limitations of the current research, plan 
the next research work, and give an outlook for future 
research work. 

Key words: underwater vehicle, Bayesian filter, 
integrated navigation, nonlinear filtering, colored 
noise, fault tolerant filter, collaborative navigation 
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Abstract

With the rapid development of digital earth and smart 
city, the demand for localization-based services is 
becoming urgent. However, continuous, accurate, and 
reliable positioning navigation in complex 
environments is a common key technical issue that 
need to be solved. While GNSS positioning 
deteriorates or even fails in urban canyons; the 
positioning error of low-cost INS quickly diverges 
over time; LiDAR has poor positioning availability 
when environmental features are insufficient. In order 
to improve the positioning and navigation service 
capabilities, China plan to build a more ubiquitous, 
more integrated, and smarter national comprehensive 
PNT (Positioning, Navigation, and Timing) system in 
2035. And the multi-sensor information fusion is one 
of the key components of the comprehensive PNT. 

Since the insufficient vertical resolution of the 
low-beam LiDAR causes the degradation of 
LiDAR odometry in some environments, we 
propose a feature point-based probability map 
matching method, which combines the advantages 
of matching by feature point with a probability 
map. The process extracts the ground feature points 
and the non-ground feature points by segmentation. A 
probability map with different resolutions will be 
constructed to deal with those features, respectively, 

with a higher vertical resolution for the ground 
feature and a higher horizontal resolution for the 
non-ground part. Scan matching by a probability map 
constructed by feature points minimizes the 
dependence on the line and surface features in the 
environment. It has been compared with the 
well-known open-source LiDAR odometry, i.e. 
Cartographer and LeGO-LOAM. Evaluations were 
carried out in different feature scenes. In the areas 
with rich line and surface features, the positioning 
accuracy of the proposed method is better than 
Cartographer, primarily the positioning result on the 
elevation and horizontal attitude. In areas lacking line 
and surface features or with the ramped ground, the 
positioning error of LeGO-LOAM is larger than the 
proposed method, and it even crashed in some 
challenging scenarios. 

Since incorrect exterior parameters of sensors 
cause inaccurate navigation results, a method for 
IMU/ODO and LiDAR/IMU calibration by 
utilizing ODO and IMU pre-integration are 
proposed: 

(1) A method of IMU/ODO calibration by utilizing 
ODO pre-integration is proposed. It is based on the 
graph optimization theory and not sensitive to the 
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initial value of the exterior parameters. There is no 
need to estimate the state of the vehicle. It has the 
capability of lever arm estimation. The simulation 
and field tests show that the error of the lever arm is 
less than 5 cm, and the error of mounting angles is 
less than 0.1°. Since the ODO measurement value by 
the calibration result is equivalent to centimeter-level 
mileage increment, the calibration method can meet 
the requirements of centimeter-level positioning. 

(2) A method of IMU pre-integration is proposed to 
eliminate the motion distortion of LiDAR, which not 
relies on GNSS information, and avoid the double 
alignment process in common calibration methods. In 
addition, the integral of IMU mitigates the impact of 
IMU noise. Simulation and real tests show that the 
lever-arm estimation error is about 1 cm, and the 
mounting angle estimation error is about 0.1°.  

In order to improve the accuracy and usability of 
vehicle positioning in complex environments, a 
multi-source fusion algorithm based on graph 
optimization is designed and implemented. Based 
on the LiDAR odometry, this algorithm adopts 
IMU/ODO pre-integration constraints to enhance the 
positioning stability in environments with insufficient 
features. And the global pose assistance by a pre-built 
probability map matching ensures positioning 
accuracy when GNSS fails. The marginalization and 
the sliding window are employed to remove the 
historical parameters while keeping the efficiency of 
the optimizer. A fully functional 
LiDAR/INS/ODO/GNSS vehicle navigation software 
- LIOGNS, has been developed for algorithm 
validation. The performance of three navigation 
modes were tested and analyzed through multiple 
datasets, including positioning by a pre-built map, 
GNSS/INS/LiDAR fusion, and 
GNSS/INS/ODO/LiDAR fusion. 

The mode of pre-built map matching of LIOGNS is 
tested in the international competition (JD Digital 
Technology Global Explorer Competition, 
‘Autonomous Driving Map Optimization and Sensor 
Fusion’ track, 2018). The multi-source data fusion 
algorithm was utilized to optimize the point cloud 
mapping and the positioning mode with a pre-built 

map. It achieved 5cm position accuracy and 0.1° 
attitude accuracy, and won the championship of 
the global finals. The GNSS/INS/LiDAR-SLAM 
integrated positioning performance of LIOGNS was 
tested and compared with Cartographer and 
LIO-SAM, through simulated GNSS interruption and 
real frequent GNSS occlusion in campus 
environment. Since the Cartographer was designed 
suitable for low dynamic vehicles, its roll, pitch, and 
elevation errors are relatively large. Limited by the 
IMU noise modeling, the horizontal attitude and 
elevation error of LIO-SAM are equivalent to 
Cartographer, and the horizontal position accuracy is 
better than Cartographer. The position and attitude 
accuracy of the proposed LIOGNS is superior 
than LIO-SAM and Cartographer, especially in 
the environment where the GNSS signal is weak 
or blocked. The accuracy and usability of the 
odometer assistance were tested based on simulated 
GNSS interruptions and in a tunnel that lack of 
environmental features. Insufficient features in the 
tunnel lead to significant positioning drift along the 
longitudinal direction. However, the odometer limits 
such drift effectively and significantly enhancing 
the reliability when both GNSS and LiDAR fail. 

In summary, this thesis proposed a 
LiDAR/INS/ODO/GNSS vehicle integrated 
navigation algorithm based on graph optimization, 
and completed the core algorithm design and 
software implementation. Through the datasets of 
open-sky area with simulated GNSS interruption, 
GNSS frequent failure environment and tunnel 
scenes, the proposed algorithms were thoroughly 
tested and analyzed. The scheme can meet the 
requirements of continuous, accurate and reliable 
positioning and navigation in complex environments 
for autonomous driving and mobile robot 
applications. 

Key words: LiDAR SLAM, GNSS/INS, 

Wheel Odometer, Integrated Navigation, 
Preintegration, Graph Optimization, 
Exterior Parameter Calibration 



90 
 

 

Journal of Global Positioning Systems (2022) 

Vol. 18, No.12: 90-91 

 

Attitude estimation methods using low-cost GNSS and 

MEMS MARG sensors and their integration 

Wei Ding, Email: wei.ding1@ucalgary.ca 

Supervisors: Prof. Yang Gao 

Institution: University of Calgary 

Graduation Date: August 15, 2022 

Abstract

For low-cost magnetic, angular rate, and gravity 
(MARG) sensors based on the 
microelectromechanical system (MEMS) technology, 
the sensor errors and measurement noises are 
significantly large. Attitude errors by integrating gyro 
data accumulate rapidly. When the vehicle is 
quasi-static, the roll and pitch angles can be 
determined by accelerometer measurements which 
use the local gravity as the reference. The 
magnetometer is resorted to generate heading 
information by measuring the geomagnetic field. 
However, the accelerometer and magnetometer 
measurements can be deteriorated by the vehicle 
maneuver and ambient artificial magnetic 
disturbances, respectively. 

Thereby a quaternion-based error state Kalman filter 
(ESKF) is developed to fuse the MEMS MARG 
sensor measurements for accuracy improved attitude 
estimation. The error state vector constitutes attitude 
error and gyro bias variation. the gyro-measured 
angular rates are used to continuously propagate the 
vehicle’s three-dimensional attitude quaternion in its 
sampling rate, whilst accelerometer and 
magnetometer measurements are employed for the 
state correction. Disturbances such as external 

accelerations and magnetic anomalies are excluded, 
and the measurement noise covariance matrix is 
adaptively adjusted according to the innovations. 

Global navigation satellite system (GNSS) based 
attitude estimation shows time-independent error 
characteristics. The pitch and heading angles can be 
determined using a single GNSS antenna based on the 
time differenced carrier phase (TDCP) observations or 
derived from a moving baseline formed between two 
firmly mounted GNSS antennas. The major 
challenges of the former include cycle slips, carrier 
phase discontinuity, and slow vehicular velocity 
which should be excluded from attitude estimation. 
Whereas the integer ambiguity resolution is 
indispensable for the latter, the baseline length 
constrained least-squares ambiguity decorrelation 
adjustment (C-LAMBDA) method can be applied. 

The GNSS/MARG sensors integrated attitude 
estimation methods are investigated to exploit the 
complementary merits of the high precision of MARG 
sensor during the short period and the performance 
stability of GNSS over the long term. The ESKF 
developed for the MARG sensor is extended to utilize 
the GNSS-derived heading and pitch angles for 
additional measurement updates. The solution 
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continuity is guaranteed by the MARG sensor alone 
during the periods when the GNSS-derived attitude 
angles are unavailable. 

Key words: Attitude estimation; MARG sensor; 
GNSS; C-LAMBDA; Data fusion; Error state 
Kalman filter 
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