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Abstract: Simultaneous Localization and Mapping
(SLAM) achieves the purpose of simultaneous
positioning and map construction based on
self-perception. The paper makes an overview in
SLAM including Lidar SLAM, visual SLAM, and
their fusion. For Lidar or visual SLAM, the survey
illustrates the basic type and product of sensors, open
source system in sort and history, deep learning
embedded, the challenge and future. Additionally,
visual inertial odometry is supplemented. For Lidar
and visual fused SLAM, the paper highlights the
multi-sensors calibration, the fusion in hardware, data,
task layer. The open question and an envision in 6G
wieless networks with SLAM end the paper. The
contributions of this paper can be summarized as
follows: the paper provides a high quality and
full-scale overview in SLAM. It's very friendly for
new researchers to hold the development of SLAM
and learn it very obviously. Also, the paper can be
considered as dictionary for experienced researchers
to search and find new interested orientation.

Keywords: Survey, SLAM  (Simultaneous
Localization and Mapping), Lidar SLAM, Visual
SLAM, Lidar and Vision Fused, User guidance.

1. Introduction

SLAM is the abbreviation of Simultaneous
Localization and Mapping, which contains two main
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tasks, localization and mapping. It is a significant
open problem in mobile robotics: to move precisely, a
mobile robot must have an accurate environment map;
however, to build an accurate map, the mobile robot’s
sensing locations must be known precisely [1]. In this
way, simultaneous map building and localization can
be seen to present a question of “which came first,
the chicken or the egg?” (The map or the motion?)

In 1990, [2] firstly proposed the use of the EKF
(Extended Kalman Filter) for incrementally
estimating the posterior distribution over robot pose
along with the positions of the landmarks. In fact,
starting from the unknown location of the unknown
environment, the robot locates its own position and
attitude  through  repeated  observation  of
environmental features in the movement process, and
then builds an incremental map of the surrounding
environment according to its own position, so as to
achieve the purpose of simultaneous positioning and
map construction. Localization is a very complex and
hot point in recent years. The technologies of
localization depend on environment and demand for
cost, accuracy, frequency and robustness, which can
be achieved by GPS (Global Positioning System),
IMU (Inertial Measurement Unit), and wireless signal,
etc.[3,4]. But GPS can only work well outdoors and
IMU system has cumulative error [5]. The technology
of wireless, as an active system, can't make a balance
between cost and accuracy. With the fast



development, SLAM equipped with Lidar, camera,
IMU and other sensors springs up in last years.

Begin with filter-based SLAM, methods called
incremental smoothing and mapping (iISAM, etc.)
gradually become the fouc. But Graph-based SLAM
play a dominant role now (such as g2o, etc.). The
algorithm derives from KF (Kalman Filter), EKF and
PF (Particle Filter) to graph-based optimization. And
single thread has been replaced by multi-thread. The
technology of SLAM also changed from the earliest
prototype of military use to later robot applications
with the fusion of multi sensors.

The organization of this paper can be
summarized as follows: in Section Il, Lidar SLAM
including Lidar sensors, open source Lidar SLAM
system, deep learning in Lidar and challenge as well
as future will be illustrated. Section 111 highlights the
visual SLAM including camera sensors, different
density of open source visual SLAM system, visual
inertial odometry SLAM, deep learning in visual
SLAM and future. In Section 1V, the fusion of Lidar
and vision will be demonstrated. Finally, the paper
identifies several directions for future research of
SLAM and provides high quality and full-scale user
guide for new researchers in SLAM.

Table 1 Comparison of the different methods

Methods Feature
Lidar SLAM more stable and robust
Visual SLAM cheaper

Lidar and Visual SLAM more powerful

2. Lidar SLAM

In 1991, [1] used multiple servo-mounted sonar
sensors and EKF filter to equip robots with SLAM
system. Begin with sonar sensors, the birth of Lidar
makes SLAM system more reliable and robustness.

2.1 Lidar Sensors

Lidar sensors can be divided into 2D Lidar and
3D Lidar, which are defined by the number of Lidar
beams. In terms of production process, Lidar can also
be divided into mechanical Lidar, hybrid solid-state
Lidar like MEMS (micro-electro-mechanical) and
solid-state Lidar. Solid-state Lidar can be produced
by the technology of phased array and flash.

Velodyne: In mechanical Lidar, it has VLP-16,
HDL-32E and HDL-64E. In hybrid solid-state Lidar,
it has Ultra puck auto with 32E.

SLAMTEC: it has low cost Lidar and robot
platform such RPLIDAR A1, A2 and R3.

Ouster: it has mechanical Lidar from 16 to 128
channels.

Quanergy: S3 is the first issued solid-state
Lidar in the world and M8 is the mechanical Lidar.
The S3-Ql is the micro solid-state Lidar.

Ibeo: It has Lux 4L and Lux 8L in mechanical
Lidar. Cooperated with Valeo, it issued a hybrid
solid-state Lidar named Scala.

In the trend, miniaturization and lightweight
solid state Lidar will occupied the market and be
satisfied with most application. Other Lidar
companies include but not limited to sick, Hokuyo,
HESAI, RoboSense, LeddarTech, ISureStar,
benewake, Livox, Innovusion, Innoviz, Trimble,
Leishen Intelligent System.
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Figure 1. Lidar Sensors

2.2 Lidar SLAM System

Lidar SLAM system is reliable in theory and
technology. [6] illustrated the theory in math about
how to simultaneous localization and mapping with
2D Lidar based on probabilistic. Furthre, [7] make
surveys about 2D Lidar SLAM system.

Table 2 Comparison of the different Lidar SLAM

Methods Feature

2D Lidar SLAM
3D Lidar SLAM

easier to positioning
powerful to perceive




2.2.12D SLAM

Gmapping: it is the most used SLAM package
in robots based on RBPF (Rao-Blackwellisation
Partical Filter) method. It adds scan-match method to
estimate the position [6,8]. It is the improved version
with Grid map based on FastSLAM [9,10].

HectorSlam: it combines a 2D SLAM system
and 3D navigation with scan-match technology and
an inertial sensing system [11].

KartoSLAM: it is a graph-based SLAM system
[12].

LagoSLAM: its basic is the graph-based SLAM,
which is the minimization of a nonlinear non-convex
cost function [13].

CoreSLAm: it is an algorithm to be understood
with minimum loss of performance [14].

Cartographer: it is a SLAM system from
Google [15]. It adopted sub-map and loop closure to
achieve a better performance in product grade. The
algorithm can provide SLAM in 2D and 3D across
multiple platforms and sensor configurations.

2.2.2 3D SLAM

Loam: it is a real-time method for state
estimation and mapping using a 3D Lidar [16]. It also
has back and forth spin version and continuous
scanning 2D Lidar version.

Lego-Loam: it takes in point cloud from a
\Velodyne VLP-16 Lidar (placed horizontal) and
optional IMU data as inputs. The system outputs 6D
pose estimation real-time and has global
optimization and loop closure [17].

Cartographer: it supports 2D and 3D SLAM
[15].

IMLS-SLAM: it presents a new low-drift
SLAM algorithm based only on 3D LiDAR data
based on a scan-to-model matching framework [18].

in

2.2.3 Deep Learning with Lidar SLAM

Feature & Detection: PointNetVLAD [19]
allows end-to-end training and inference to extract
the global descriptor from a given 3D point cloud to
solve point cloud based retrieval for place recognition.
VoxelNet [20] is a generic 3D detection network that
unifies feature extraction and bounding box
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prediction into a single stage, end-to-end trainable
deep network. Other work can be seen in BirdNet
[21]. LMNet [22] describes an efficient single-stage
deep convolutional neural network to detect objects
and outputs an objectness map and the bounding box
offset values for each point. PIXOR [23] is a
proposal-free, single-stage detector that outputs
oriented 3D object estimates decoded from
pixel-wise neural network predictions. Yolo3D [24]
builds on the success of the one-shot regression
meta-architecture in the 2D perspective image space
and extend it to generate oriented 3D object bounding
boxes from LiDAR point cloud. PointCNN [25]
proposes to learn a X-transformation from the input
points. The X-transformation is applied by
element-wise product and sum operations of typical
convolution operator. MV3D [26] is a sensory-fusion
framework that takes both Lidar point cloud and
RGB images as input and predicts oriented 3D
bounding boxes. PU-GAN [27] presents a new point
cloud upsampling network based on a generative
adversarial network (GAN). Other similar work can
be seen in this best paper in CVPR2018 but not
limited to [28].

Recognition & Segmentation: In fact, the
method of segmentation to 3D point cloud can be
divided into Edge-based, region growing, model
fitting, hybrid method, machine learning application
and deep learning [29]. Here the paper focuses on the
methods of deep learning. PointNet [30] designs a
novel type of neural network that directly consumes
point clouds, which has the function of classification,
segmentation and semantic analysis. PointNet++ [31]
learns hierarchical features with increasing scales of
contexts. VoteNet [32] constructs a 3D detection
pipeline for point cloud as a end-to-end 3D object
detection network, which is based on PointNet++.
SegMap [33] is a map representation solution to the
localization and mapping problem based on the
extraction of segments in 3D point clouds.
SqueezeSeg [34-36] are convolutional neural nets
with recurrent CRF (Conditional random fields) for
real-time road-object segmentation from 3d Lidar
point cloud. PointSIFT [37] is a semantic
segmentation framework for 3D point clouds. It is



based on a simple module which extracts features
from neighbor points in eight directions. PointWise
[38] presents a convolutional neural network for
semantic segmentation and object recognition with
3D point clouds. 3P-RNN [39] is a novel end-to-end
approach for unstructured point cloud semantic
segmentation along two horizontal directions to
exploit the inherent contextual features. Other similar
work can be seen but not limited to SPG [40] and the
review [29]. SegMatch [41] is a loop closure method
based on the detection and matching of 3D segments.
Kd-Network [42] is designed for 3D model
recognition tasks and works with unstructured point
clouds. DeepTemporalSeg [43] propose a deep
convolutional neural network (DCNN) for the
semantic segmentation of a LiDAR scan with
temporally consistency. LU-Net [44] achieve the
function of semantic segmentation instead of
applying some global 3D segmentation method.
Other similar work can be seen but not limited to
PointRCNN [45].

Localization: L3-Net [46] is a novel
learning-based LiDAR localization system that
achieves centimeter-level localization accuracy.
SuMa++ [47] computes semantic segmentation
results in point-wise labels for the whole scan,
allowing us to build a semantically-enriched map
with labeled surfels and
scan matching via semantic constraints.

improve the projective

(c) L3-Net

(d) LU-Net

Figure 2. Deep Learning in Lidar SLAM
2.3 Challenge and Future
2.3.1 Cost and Adaptability
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The advantage of Lidar is that it can provide 3D
information, and it is not affected by night and light
change. In addition, the angle of view is relatively
large and can reach 360 degrees. But the
technological threshold of Lidar is very high, which
lead to long development cycle and unaffordable cost
on a large scale. In the future, miniaturization,
reasonable cost, solid state, and achieving high
reliability and adaptability is the trend.

2.3.2 Low-Texture and Dynamic Environment

Most SLAM system can just work in a fixed
environment but things change constantly. Besides,
low-Texture environment like long corridor and big
pipeline will make trouble for Lidar SLAM. [48] uses
IMU to assist 2D SLAM to solve above obstacles.
Further, [49] incorporates the time dimension into the
mapping process to enable a robot to maintain an
accurate map while operating in dynamical
environments. How to make Lidar SLAM more
robust to low-texture and dynamic environment, and
how to keep map updated should be taken into
consideration more deeply.

2.3.3 Adversarial Sensor Attack

Deep Neural Network is easily attacked by
adversarial samples, which is also proved in
camera-based perception. But in Lidar-based
perception, it is highly important but unexplored. By
relaying attack, [50] firstly spoofs the Lidar with
interference in output data and distance estimation.
The novel saturation attack completely incapacitate a
Lidar from sensing a certain direction based on
Velodyne’s VLP-16. [51] explores the possibility of
strategically controlling the spoofed attack to fool the
machine learning model. The paper regards task as an
optimization problem and design modeling methods
for the input perturbation function and the objective
function., which improves the attack success rates to
around 75%. The adversarial sensor attack will spoof
the SLAM system based on Lidar point cloud, which
is invisible as hardly found and defended. In the case,
research on how to prevent the Lidar SLAM system
from adversarial sensor attack should be a new topic.



3. Visual SLAM

As the development of CPU and GPU, the
capability of graphics processing becomes more
and more powerful. Camera sensors getting cheaper,
more lightweight and more versatile at the same time.
The past decade has seen the rapid development of
visual SLAM. Visual SLAM using camera also make
the system cheaper and smaller compare with Lidar
system. Now, visual SLAM system can run in micro
PC and embedded device, even in mobile devices like
smart phones [52-56].

Visual SLAM includes collection of sensors'
data such as camera or inertial measurement unit ,
Visual Odometry or Visual Inertial Odometry in front
end, Optimization in back end, Loop closure in back
end and Mapping [57]. Relocalization is the
additional modules for stable and accurate visual
SLAM [58].

In process of Visual Odometry, in addition to the
method based on features or template matching, or
correlation methods to determine the motion of the
camera, there is another method relying on the
Fourier-Mellin Transform [59]. [60] and [61] give the
example in the environment with no distinct visual
features when use the ground-facing camera.

3.1 Visual Sensors

The most used sensors that visual SLAM based
are cameras. In detail, camera can be divided into
monocular camera, stereo camera, RGB-D camera,
event camera, etc.

Monocular camera: visual slam based on
monocular camera have a scale with real size of track
and map. That's say that the real depth can't be got by
monocular camera, which called Scale Ambiguity
[62]. The SLAM based on Monocular camera has to
initialization, and face the problem of drift.

Stereo camera: stereo camera is a combination
of two monocular camera but the distance called
baseline between the two monocular camera is
known. Although the depth can be got based on
calibration, correction, matching and calculation, the
process will be a waste of lost of resources.

RGB-D camera: RGB-D camera also called
depth camera because the camera can output depth in
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pixel directly. The depth camera can be realized by
technology of stereo, structure-light and TOF. The
theory of Structure-light is that infrared laser emits
some pattern with structure feature to the surface of
object. Then the IR camera will collect the change of
patter due to the different depth in the surface. TOF
will measure the time of laser's flight to calculate the
distance.

Event camera: [63] illustrates that instead of
capturing images at a fixed rate, event camera
per-pixel brightness changes
asynchronously. Event camera has very high dynamic
range (140 dB vs. 60 dB), high temporal resolution
(in the order of us), low power consumption, and do
not suffer from motion blur. Hence, event cameras
can performance better than traditional camera in
high speed and high dynamic range. The example of
the event camera are Dynamic Vision Sensor [64-67],
Dynamic Line Sensor [68], Dynamic and
Active-Pixel Vision Sensor [69], and Asynchronous
Time-based Image Sensor [70].

Next the product and company of visual sensors
will be introduced:

Microsoft: Kinectc v1(structured-light), Kinect
v2(TOF), Azure Kinect(with microphone and IMU).

Intel: 200 Series, 300 Series, Module D400
Series, D415(Active IR Stereo, Rolling shutter),
D435(Active IR Stereo, Global Shutter), D435i(D435

measures

with IMU).

Stereolabs ZED: ZED Stereo camera(depth up
to 20m).

MYNTAI: D1000 Series(depth  camera),

D1200(for smart phone), S1030 Series(standard
stereo camera).

Occipital Structure: Structure Sensor(Suitable
for ipad).

Samsung: Gen2 and Gen3 dynamic vision
sensors and event-based vision solution [65].

Other depth camera can be listed as follows but
not limited to Leap Motion, Orbbec Astra, Pico
Zense, DUO, Xtion, Camboard, IMI, Humanplus,
PERCIPIO.XYZ, PrimeSense. Other event camera
can be listed as follows but not limited to iniVation,
AIT(AIT Austrian Institute of Technology),
SiliconEye, Prophesee, CelePixel, Dilusense.



(b) D435i

(a) Kinect

(c) DVXplorer Lite (d) Leap Motion Controller

Figure 3. Visual Sensors
3.2 Visual SLAM System

The method of utilizing information from image
can be classified into direct method and feature based
method. Direct method leads to semiDense and dense
construction while feature based method cause sparse
construction. Next, some visual slam will be
introduced ( ATAMY is a visual SLAM toolkit for
beginners [58]):

Table 3 Comparison of the different Visual SLAM

Methods Feature
Sparse Vslam positioning, faster
Semi-Dense Vslam Balance

Dense Vslam Reconstruction, slow

3.2.1 Sparse Visual SLAM

MonoSLAM: it (monocular) is the first
real-time mono SLAM system, which is based on
EKF [71].

PTAM: it (monocular) is the first SLAM system
that parallel tracking and mapping. It firstly adopts
Bundle Adjustment to optimize and concept of key
frame [54,72]. The later version supports a trivially
simple yet effective relocalization method [73].

ORB-SLAM: it (monocular) uses three threads:
Tracking, Local Mapping and Loop Closing [52,74].
ORB-SLAM v2 [75] supports monocular, stereo, and
RGB-D cameras. CubemapSLAM [76]isa SLAM
system for monocular fisheye cameras based on
ORB-SLAM. Visual Inertial ORB-SLAM [77,78]
explains the initialization process of IMU and the
joint optimization with visual information.

proSLAM: it (stereo) is a lightweight visual
SLAM system with easily understanding [79].
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ENFT-sfm: it (monocular) is a feature tracking
method which can efficiently match feature point
correspondences among one or multiple video
sequences [80]. The updated version ENFT-SLAM
can run in large scale.

OpenVSLAm: it (all types of cameras) [81] is
based on an indirect SLAM algorithm with sparse
features. The excellent point of OpenVSLAM is that
the system supports perspective, fisheye, and
equirectangular, even the camera models you design.

TagSLAM: it realizes SLAM with AprilTag
fiducial markers [82]. Also, it provides a front end to
the GTSAM factor graph optimizer, which can design
lots of experiments.

Other similar work can be listed as follows but
not limited to UcoSLAM [83].

3.2.2 SemiDense Visual SLAM

LSD-SLAM: it (monocular) proposes a novel
direct tracking method which operates on Lie Algebra
and direct method [84]. [85] make it supporting
stereo cameras and [86] make it supporting
omnidirectional cameras. Other similar work with
omnidirectional cameras can be seen in [87].

SVO: it (monocular) is Semi-direct Visual
Odoemtry [88]. It uses sparse model-based image
alignment to get a fast speed. The update version is
extended to multiple fisheye and
catadioptric ones [78]. [78] gives detailed math proof
about VIO. CNN-SVO [89] is the version of SVO
with the depth prediction from a single-image depth
prediction network.

DSO: it (monocular) [90,91] is a new work
from the author of LSD-SLAM [84]. The work
creates a visual odoemtry based on direct method and
sparse method without detection and description of
feature point.

EVO: it (Event camera) [92] is an event-based
visual odometry algorithm. Our algorithm is
unaffected by motion blur and operates very well in
challenging, high dynamic range conditions with
strong illumination changes. Other semiDense SLAM
based on event camera can be seen in [93]. Other VO
(visual odometry) system based on event camera can
be seen in [94,95].

cameras,



3.2.3 Dense Visual SLAM

DTAM: it (monocular) can reconstruct 3D
model in real time based on minimizing a global
spatially regularized energy functional in a novel
non-convex optimization framework, which is called
direct method [96,97].

MLM SLAM: it (monocular) can reconstruct
dense 3D model online without graphics processing
unit (GPU) [98]. The key contribution is a
multi-resolution  depth  estimation and spatial
smoothing process.

Kinect Fusion: it (RGB-D) is almost the first
3D reconstruction system with depth camera
[99,100].

DVO: it (RGB-D) proposes a dense visual
SLAM method, an entropy-based similarity measure
for keyframe selection and loop closure detection
based g2o framework [101-103].

RGBD-SLAM-V2: it (RGB-D) can reconstruct
accurate 3D dense model without the help of other
sensors [104].

Kintinuous: it (RGB-D) is a visual SLAM
system with globally consistent point and mesh
reconstructions in real-time [105-107].

RTAB-MAP: it (RGB-D) supports simultaneous
localization and mapping but it's hard to be basis to
develop upper algorithm [108-110]. The latter version
support both visual and Lidar SLAM [111].

Dynamic Fusion: it (RGB-D) presents the first
dense SLAM system capable of reconstructing
non-rigidly deforming scenes in real-time based
Kinect Fusion [112]. VolumeDeform [113] also
realizes real-time non-rigid reconstruction but not
open source. The similar work can be seen in
Fusion4D [114].

Elastic Fusion: it (RGB-D) is a real-time dense
visual SLAM system capable of capturing
comprehensive dense globally consistent surfel-based
maps of room scale environments explored using an
RGB-D camera [115,116].

InfiniTAM: it (RGB-D) is a real time 3D
reconstruction system with CPU in Linux, 10S,
Android platform [55,117,118].

Bundle Fusion: it (RGB-D) supports robust
tracking with recovery from gross tracking failures
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and re-estimates the 3D model in real-time to ensure
global consistency [119].

KO-Fusion: it (RGB-D) [120] proposes a dense
RGB-D SLAM system with kinematic and odometry
measurements from a wheeled robot.

SOFT-SLAM: it (stereo) [121] can create dense
map with the advantages of large loop closing, which
is based on SOFT [122] for pose estimation.

Other works can be listed as follows but not
limited to SLAMRecon, RKD-SLAM [123] and
RGB-D SLAM [124]. Maplab [125], PointNVSNet
[126], MID-Fusion [127] and MaskFusion [128]
will introduced in next chapter.

3.2.4 Visual Inertial Odometry SLAM

The determination of visual slam is technically
challenging. Monocular visual SLAM has problems
such as necessary initialization, scale ambiguity and
scale drift [129]. Although stereo camera and RGB-D
camera can solve the problems of initialization and
scale, some obstacles can't be ignored such as fast
movement (solved with Global Shuttle or fisheye
even panoramic camera), small field of view, large
calculation, occlusion, feature loss, dynamic scenes
and changing light. Recently, VIO (visual inertial
odometry SLAM) becomes the popular research.

First of all, [130-132] start some try in VIO.
[77,78] give the samples and math proof in
visual-inertial odeometry. [133] use several rounds of
visual-inertial bundle adjustment to make a robust
initialization for V10. Specially, tango [134], Dyson
360 Eye and hololens [135] are the real products of
VIO and receive good feedback. In addition to this,
ARKit (filter-based) from Apple, ARcore (filter-based)
from Google, Inside-out from uSens are the
technology of VIO. PennCOSYVIO [136]
synchronizes data from a VI-sensor (stereo camera
and IMU), two Project Tango hand-held devices, and
three GoPro Hero 4 cameras and calibrates
intrinsically and extrinsically. Next some open source
VIO system will be introduced [137]:

SSF: it (loosely-coupled, filter-based) is a time
delay compensated single and multi sensor fusion
framework based on an EKF [138].

MSCKEF: it (tightly-coupled, filter-based) is
adopted by Google Tango based on extended Kalman



filter [139]. But the similar
MSCKF-VIO [140] open the source.

ROVIO: it (tightly-coupled, filter-based) is an
extended Kalman Filter with tracking of both 3D
landmarks and image patch features [141]. It supports
monocular camera.

OKVIS: it (tightly-coupled, optimization-based)
is an open and classic Keyframe-based Visual-Inertial
SLAM [130]. It supports monocular and stereo
camera based sliding window estimator.

VINS: VINS-Mono (tightly-coupled,
optimization-based) [53,142,143] is a real-time
SLAM framework for Monocular Visual-Inertial
Systems. The open source code runs on Linux, and is
fully integrated with ROS. VINS-Mobile [144,145]
is a real-time monocular visual-inertial odometry
running on compatible iOS devices. Furthermore,
VINS-Fusion supports multiple visual-inertial sensor
types (GPS, mono camera + IMU, stereo cameras +
IMU, even stereo cameras only). It has online spatial
calibration, online temporal calibration and visual
loop closure.

ICE-BA: it (tightly-coupled, optimization-based)
presents an incremental, consistent and efficient
bundle adjustment for visual-inertial SLAM, which
performs in parallel both local BA over the sliding
window and global BA over all keyframes, and
outputs camera pose and updated map points for each
frame in real-time [146].

Maplab: it (tightly-coupled, optimization-based)
is an open, research-oriented visual-inertial mapping
framework, written in C++, for creating, processing
and manipulating multi-session maps. On the one
hand, maplab can be considered as a ready-to-use
visual-inertial mapping and localization system. On
the other hand, maplab provides the research
community with a collection of multi-session
mapping tools that include map merging,
visual-inertial batch optimization, loop closure, 3D
dense reconstruction [125].

Other solutions can be listed as follows but not
limited to VI-ORB (tightly-coupled,
optimization-based) [77] (the works by the author of
ORB-SLAM, but not open source), StructVIO [147].
RKSLAM [148] can reliably handle fast motion and

work called
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strong rotation for AR applications. Other VIO
system based on event camera can be listed as
follows but not limited to [149-151]. mi-VINS [152]
uses multiple IMU, which can work if IMU sensor
failures.

In VIO, visual images can enhance the inertial
navigation algorithm. To deal with the correlation
between the generated visual odometry and also
about the multiframe visual odometry, [153]
integrates the features tracked from all overlapping
image frames by a sequential de-correlation the
Kalman filter measurement update with fever
computation resources consumption. The proposed
method is referred as multi-frame visual odometry
(MFVO) [154]. In the image-aided inertial integrated
navigation, the relative positions of visual odometry
are pairwise correlated in terms of time. The shaping
filter proposed [155] uses Cholesky factors based on
that the measurement noise is only correlated with
the ones from the previous epoch.

VIO SLAM based on deep learning can be seen
in [156]. It shows a network that performs
visual-inertial odometry (VIO) without inertial
measurement unit (IMU) intrinsic parameters or the
extrinsic calibration between an IMU and camera.
[157] provides a network to avoid the calibration
between camera and IMU.

3.2.5 Deep Learning with Visual SLAM

Nowadays, deep learning plays a critical role in
the maintenance of computer As the
development of visual SLAM, more and more focus
are paid into deep learning with SLAM. The term
"semantic SLAM" refers to an approach that includes
the semantic information into the SLAM process to
enhance the performance and representation by
providing  high-level understanding, robust
performance, resource awareness, and task driven
perception. Next, we will introduce the implement of
SLAM with semantic information in these aspects:

Feature & Detection: Pop-up SLAM
(Monocular) [158] proposes real-time monocular
plane SLAM to demonstrate that scene understanding
could improve both state estimation and dense
mapping especially in low-texture environments. The
plane measurements come from a pop-up 3D plane

vision.



model applied to each single image. [159] gets
semantic key points predicted by a convolutional
network (convnet). LIFT [160] can get more dense
feature points than SIFT. DeepSLAM [161] has a
significant performance gap in the presence of image
noise when catch the feature points. SuperPoint [162]
presents a self-supervised framework for training
interest point detectors and descriptors suitable for a
large number of multiple-view geometry problems in
computer vision. [163] proposes to use the
easy-to-labeled 2D detection and discrete viewpoint
classification together with a light-weight semantic
inference method to obtain rough 3D object
measurements. GCN-SLAM [164] presents a deep
learning-based network, GCNv2, for generation of
key points and descriptors. [165] fuses information
about 3D shape, location, and, if available, semantic
class. SalientDSO [166] can realize visual saliency
and environment perception with the aid of deep
learning. [167] integrates the detected objects as the
quadrics models into the SLAM system. CubeSLAM
(Monocular) is a 3D Object Detection and SLAM
system [168] based on cube model. It achieve
object-level mapping, positioning, and dynamic
object tracking. [169] combines the cubeSLAM
(high-level object) and Pop-up SLAM (plane
landmarks) to make map more denser, more compact
and semantic meaningful compared to feature point
based SLAM. MonoGRNet [170] is a geometric
reasoning network for monocular 3D object detection
and localization. Feature based on event camera can
be seen but not limited to [171,172]. About the
survey in deep learning for detection, [173] could be
a good choice.

Recognition & Segmentation: SLAM++ (CAD
model) [174] presents the major advantages of a new
‘object oriented” 3D SLAM paradigm, which takes
full advantage in the loop of prior knowledge that
many scenes consist of repeated, domain-specific
objects and structures. [175] combines the state-of-art
deep learning method and LSD-SLAM based on
video stream from a monocular camera. 2D semantic
information are transferred to 3D mapping via
correspondence between connective keyframes with
spatial consistency. Semanticfusion (RGBD) [176]
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combines CNN (Convolutional Neural Network) and
a state-of-the-art dense Simultaneous Localization
and Mapping (SLAM) system, ElasticFusion [116] to
build a semantic 3D map. [177] leverages sparse,
feature-based RGB-D  SLAM,  image-based
deep-learning object detection and 3D unsupervised
segmentation. MarrNet [178] proposes an
end-to-end  trainable  framework, sequentially
estimating 2.5D sketches and 3D object shapes.
3DMV (RGB-D) [179] jointly combines RGB color
and geometric information to perform 3D semantic
segmentation of RGB-D scans. Pix3D [180] study
3D shape modeling from a single image.
ScanComplete [181] is a data-driven approach
which takes an incomplete 3D scan of a scene as
input and predicts a complete 3D model, along with
per-voxel semantic labels. Fusion++ [182] is an
online object-level SLAM system which builds a
persistent and accurate 3D graph map of arbitrary
reconstructed objects. As an RGB-D camera browses
a cluttered indoor scene, Mask-RCNN instance
segmentations are wused to initialise compact
per-object Truncated Signed Distance Function
(TSDF) reconstructions with object size dependent
resolutions and a novel 3D foreground mask.
SegMap [183] is a map representation based on 3D
segments  allowing  for robot localization,
environment reconstruction, and semantics extraction.
3D-SIS [184] is a novel neural network architecture
for 3D semantic instance segmentation in commaodity
RGB-D scans. DA-RNN [185] uses a new recurrent
neural network architecture for semantic labeling on
RGB-D videos. DenseFusion [186] is a generic
framework for estimating 6D pose of a set of known
objects from RGB-D images. Other work can be seen
in CCNet [187]. To recognize based on event camera,
[188-191] are the best paper to be investigated.
Recovery Scale: CNN-SLAM (Monocular)
[192] estimates the depth with deep learning. Another
work can b