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Abstract: There are many obstacles in the UWB 
indoor positioning, such as installation location 
limitation of base stations, non-line-of-sight and so 
forward. In this paper, the high-precision indoor 
positioning model was discussed, and then the UWB 
indoor positioning method was given based on the 
heterogeneous data constraints, such as PDR, map 
and vision. Three indoor positioning models, the 
kinematic adaptive robust EKF UWB model based on 
the gain matrix, the UWB/PDR/Map coupled model, 
and the UWB/Vision fusion model were built and 
assessed, respectively. Afterward, the precision and 
the potential application scenarios of the three models 
were discussed via the practical tests. The test results 
showed that, with our method, the overall positioning 
accuracy reached around ±0.2 m under the conditions 
of the full or partial UWB signal coverage, available 
or interrupted line-of-sight, or undergoing other 
situational challenges such as the sparse texture and 
the continuous variation of the light strength. 
Key words: Heterogeneous information; UWB; 
Robust EKF; Indoor location 

1 Introduction 

In spatial information science and engineering, the 
acquisition and processing of high-precision 
positioning information belong to the frontier 
research worldwide [1]. Many efforts have been made 
to consistently advance the techniques in this area, 

for example [2], the "Xihe" plan in China, the “Insight 
into the battlefield” and the “Next Generation 911 
Project” in US, and the “Galileo Local Technology 
Plan” in Europe. With the completion of global 
coverage of the BDS (Beidou System) and other 
global satellite navigation systems, the real-time, all-
weather operational condition, and global high 
precision PNT (Positioning, Navigation and Timing) 
are enabled to survey many outdoor applications [3,4]. 

With the indoor positioning and navigation 
techniques, even there are many options, such as 
WiFi [5], UWB (Ultra Wide Band) [6], RF (Radio 
Frequency) [7], and Bluetooth [8, 9], the meter-level 
positioning results may be easily to be achieved, 
however, developing the higher precision of indoor 
positioning techniques is still extremely challenging. 

Specifically, the UWB positioning can reach the 
accuracy level of decimeters or even centimeters by 
measuring the transmission time, the angle, and the 
strength of electromagnetic wave signals between a 
positioning tag and a base station [10].  When UWB is 
used in positioning, its methods can be divided into 
RSSI (Received Signal Strength Indication), TDOA 
(Time Difference of Arrival), AOA(Angle-of-Arrival), 
TOA (Time of Arrival), etc. The positioning based on 
RSSI needs to be modeled according to the signal 
propagation fading to realize ranging. It can not 
reflect the advantages of UWB when applied to 
UWB [11]. AOA can overcome the influence of NLOS 
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(Non Line of Sight) propagation to a certain extent 
and can locate with fewer sensors, but the cost is high 
due to the need to use antenna array and directional 
antenna angle measurement [12]. TOA can make full 
use of the advantages of high UWB time resolution, 
but the problem of clock synchronization at the 
transceiver must be solved first [13]. TDOA can 
overcome the problem of synchronization at the 
transceiver, but the synchronization between anchor 
nodes still needs to be considered [14]. 

However, due to the signal obstruction or 
reflection of variant structural objects and/or other 
solid features indoors, there may exist serious 
multipath effect, irregular LOS (Line of Sight) 
propagation, etc., which negatively affect the 
positioning accuracy, as well as the configuration of 
tags and base stations, pre-installation and 
measurement of the precise location of the base 
stations, etc., which restrict the positioning accuracy 
and even working area. Wymeersch [15] analyzed the 
characteristics of a large number of UWB signals in 
LOS and NLOS environments. Using SVM (Support 
Vector Machine, SVM) to identify the NLOS state 
and weaken the error can effectively eliminate the 
NLOS error and improve the ranging accuracy, but a 
large amount of data statistics is needed. Li [16] used 
Kalman filter to smooth the original ranging 
information and proposes a colored noise adaptive 
Kalman method to eliminate NLOS error. The 
simulation effect is obvious, but the amount of 
calculation is large. Meng [17] analyzed the geometric 
structure of the wall when the IR-UWB (Impulse 
Radio UWB) signal propagated through the wall, 
deduced the upper limit of the ranging error caused 
by the additional delay, and directly corrected the 
TOA ranging result by using the NLOS distance error 
information. This method requires more a priori 
knowledge and is difficult to be applied to the 
ranging elimination of moving targets. 

Essentially, INS (Inertial navigation system) used 
in PDR (Pedestrian dead reckoning) algorithm uses 
accelerometers, and gyroscopes to obtain position, 
velocity, and attitude information and plays an 
important role in the field of navigation and location 
services. But its sensor technology and integration 

calculation principle restrict its popularization. A 
standalone INS system is difficult to satisfy the 
demand of the long-term navigation and positioning 
accuracy requirements [18]. As a streaming media 
technology, the video sensors have the capability of 
positioning and the acquisition of the environmental 
information, and the relative positioning accuracy 
may reach 0.1% to 2% of the working ranges. 
However, one find the use the visual method very 
challenging in environments such as sparse textures, 
too bright or too dark indoors [19, 20].  In this case, 
these sensors to assist UWB for fusion positioning 
can effectively make up for the shortcomings of each 
system. Building a hybrid positioning system can 
enhance the continuity and robustness of positioning 
in complex indoor environment. Renaudin [21] 
designed an optimal combined filter to fuse the 
arrival angle and arrival time difference of UWB 
signal with the acceleration, angular velocity and 
magnetic field intensity output by MEMS inertial 
system, so as to further suppress the UWB NLOS 
error. Zhang [22] used extended Kalman filter to fuse 
MEMS, UWB and barometer to form a position and 
heading estimation system, and obtained more 
reliable vertical positioning results. Nyqvist [23] 
presented a method for global pose estimation using 
INS, monocular vision, and UWB sensors, and 
showed the benefit of the suggested sensor 
combination. Qiao [24] used the position information 
output by monocular vision ORB (Oriented Fast and 
Rotated Brief)-SLAM (Simultaneous Localization 
and Mapping) and the positioning information 
calculated by UWB as measurement information, and 
used extended Kalman filter for data fusion to realize 
indoor positioning, which effectively overcomes the 
problem of unable positioning caused by monocular 
vision ORB-SLAM tracking failure, and effectively 
suppresses the influence of UWB NLOS error. 

Our research has been targeting such problems 
mentioned above. This manuscript particularly 
discusses three different indoor positioning methods 
based on using UWB, PDR, and the vision sensors, 
and assesses the performance improvement with the 
proposed models. In the practical tests, the 
challenging environment were considered through the 
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reduction of the number of UWB base stations, 
varying the LOS obstruction, environmental texture 
and light strength through their influence on the 
indoor positioning accuracy. Afterward, the overall 
precision and potential application scenarios of the 
three methods were discussed based on the practical 
tests. 

2 Extended Kalman filter 

The classical Kalman filter is based on the linear 
system, that is, both the measurement model and the 
system model are linear systems. For discrete linear 
systems, the state equation can be described as: 

,k k k k k k− − − −= +1 1 1 1x x G wΦ                              (1) 

where, kx  represents the state vector, , 1k k −Φ  
represents the state transition matrix, 1k −G  represents 
the system noise drive matrix and 1k −w  represents 
the process noise vector. k  is represented as an 
observation epoch. 

Observation vectors and state vectors should 
simultaneously satisfy certain functional relationships. 
The observation equation of a discrete linear system 
can be expressed as: 

k k k k= +z H x v                                                 (2) 

where, kz  represents the system observation vector, 
kH  represents the observation coefficient matrix and 

kv  represents the observed noise vector. For a 
classical Kalman filter, the process and observation 
noise vectors should conform to the following normal 
distributions: 
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where kQ  and kR are the positive definite 
covariance matrices of process noise and observation 
noise vectors, respectively [25]. 

Kalman filter is a recursive estimation process 
based on system state and noisy observation sequence, 
which usually includes time update process and 
measurement update process. 

The time update process is as follows[26]: 
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where the symbols “ˆ”,  “-” and “+” represent the 
estimated, predicted, and filtered value, respectively. 
ˆ k

−x  and k
−P  are the state prediction and its 

covariance matrix at kt , 1ˆ k
+
−x  and 1k

+
−P  are the state 

estimate and its covariance matrix at 1kt − , 
respectively. 

The measurement updating process is as follows: 
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where, kK  is the filter gain matrix, which is 
calculated with the minimum state variance as the 
constraint condition. 

The predicted residual is as follows: 

ˆ ˆk k k k k k
−= − = −V z H x z z                               (6) 

Linear system is only an ideal system. In practical 
applications, system state models or observation 
models mostly contain non-linear characteristics. The 
EKF (Extended Kalman filter) is one of the most 
commonly used estimation method for nonlinear 
filtering problems in scientific and engineering 
applications. The system model is as follows: 

1 1 1( , )k k k k− − −=x f x w             (7) 

along with the observation model: 

( , )k k k k=z h x v                (8) 

The noise matrix of EKF non-linear system still 
satisfies the requirement of Formula (3). Before time 
update, the system needs to linearize the state 
equation by first order Taylor series expansion to get 
the state transition matrix and noise drive matrix, 
which can then be solved as KF. 
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At the same time, the observation equation needs 
to be linearized to obtain the observation coefficient 
matrix before updating the measurements. 
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After the state equation and the observation 
equation are discretized, the state can be updated by 
the methods of equations (4) and (5). 

3 The UWB indoor positioning with the 
heterogeneous information constraints 

3.1 The robust EKF using UWB 

Under the consideration that the motion process 
involves position, velocity and acceleration 
information, this paper proposes a 9-dimensional 
state vector UWB dynamic positioning model based 
on EKF model. The state vectors are as follows: 

[ ]k = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆     x x x x y y y z z z                    (11) 

where , ,∆ ∆ ∆ u u u  (u = x, y, z) represent the position, 

velocity and acceleration errors in the u direction, 
respectively. The accelerations can be considered as a 
first-order Markov process [27]. Both of the process 
noise vector and the observation noise vector are 
considered to the zero-mean white noise processes. 
The state coefficient matrix can be obtained from the 
motion model: 
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where T  represents the time interval. The observable 
is the range from a UWB mobile station to each base 
station, and the spatial geometric distance P  is: 

( ) ( ) ( )2 2 2
i i a i a i aP x x y y z z= − + − + −  (14) 

where, ( ),,a a ax y z  is the location coordinates of 

UWB mobile station, ( ),,i i ix y z  is the coordinates of 

the i-th base station. After linearizing the above 

formula, the approximate coordinates ( )0 0, 0,a a ax y z  

of the mobile station tag are brought in as the initial 
value to obtain the observation equation: 
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with ( ) ( ) ( )2 2 2
0 0 0 0a i a i a i aP x x y y z z′ = − + − + − , 

0

0

i a
a

a

x xl
P
−

=
′

 , 0

0

i a
a

a

y ym
P
−

=
′

 and 0

0

i a
a

a

z zn
P
−

=
′

. 

Therefore, the observation matrix is: 

[ 0 0 0 0 0 0]a a aH l m n=  (16) 

But, when the observations contain gross errors, 
the state estimation will be biased so that the 
influence of gross errors in measurements cannot be 
ignored. In this paper we construct a robust EKF gain 
matrix that can restrict the effect of the gross errors 
on the state estimation as [28]: 

0
2

10
0 1

1 0

10

ij j

j
ij ij j

j

j

s c

c sc c s c
s c c

s c

                             ≤


−  
= × × < ≤  −  

                             > 



K

K K  (17) 

where, 0c  and 1c are robust parameters. 0c  is 2.5-3.5, 

1c is 3.5-4.5[28]. 

,j k j j js V r s=                       (18) 

where i represents the i-th component in the state 
vector, and j represents the j-th component in the 

observation vector, ,k jV ， jr  and js represents the 
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prediction residual(Equation 6), redundancy index [29] 

and a-priori standard deviation of the j-th observation, 
respectively. At epoch k, the redundancy index rj of 
the j-th observation is generally defined by: 

( ) ( ( ) ( ))
yi V y ir k k k= Q W                          (19) 

where ( )
yV kQ  is the covariance matrix of the 

residual vector and ( )y kW  is the weighting matrix 

of the observation vector under the assumption of a 
diagonal matrix. The covariance matrix of the 
residual vector for the observation vector is: 

( )
y

T
V k k k kk −= +Q H P H R                             (20) 

3.2 The UWB/PDR/Map fusion 

The range and its accuracy from the UWB indoor 
positioning technique are restricted by the number of 
the base stations and their distribution. The 
positioning performance degrades if the UWB signals 
become weak. Sometime, the UWB system may even 
become unavailable. Hence, the integration of UWB, 
PDR (pedestrian dead reckoning) and Map is 
introduced. The corresponding EKF is designed to 
include the position errors dN and dE , the moving 
distance error ds and the heading error dθ in 

its state vector [30]: 

[ ]T
k ddsdEdN θ=x                                           (21) 

According to the PDR motion model, the state 
transition matrix should be: 

1 0 cos sin
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            (22) 

When the position of the UWB system is 
updated, the position difference between the UWB 
and PDR system is taken as the observation as 
follows: 

, , , ,[ ] [ ]T
k k u k p k u k pN  E N N  E E= ∆ ∆ = − −z (23) 

Then the observation matrix is： 

1 0 0 0
0 1 0 0kH  

=  
 

                                   (24) 

where N∆  and E∆  are the north and east position 
differences between the two positioning systems, 

,k uN and ,k uE  are the north and east UWB positions, 

,k pN and are the north and east positions 

calculated according to the PDR algorithm at time k. 

When the output of the UWB position is not 
updated, the differences between the system 
prediction coordinates and the PDR observation 
coordinates are taken as the observations, and the rest 
remains unchanged, and the PDR position is 
recursively corrected.  

The position errors obtained through filtering are 
used to update the predicted positions at the current 
time. So, the final position is updated as follows [31]: 

, ,

, ,

p k p k

p k p k

N N dN
E E dE

+

+

 = +
 = +

                                                        (25) 

In order to suppress the divergence of the 
heading estimate obtained from the INS, we match 
the position with the indoor map based on the UWB 
positioning result, and virtually design 16 possible 
equally spaced directions around this position, i.e., 
every other 22.5 degrees. The direction of the center 
of the section is adopted as the moving direction of a 
pedestrian. Relative to the heading angle of the 
inertial navigation system, the center direction of the 
nearest interval is used as the heading. If the 
difference between the heading from the inertial 
navigation and the nearest map direction is less than 
5 degrees, the heading angle of the inertial navigation 
is used as the current heading [30]. 

 
Fig.1 Heading angle calculating strategy 
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3.3 UWB/Vision Fusion 

Visual sensors can be used not only for 
positioning during emergency rescues such as urban 
fires and earthquakes, but also for acquiring the 
environment information to compensate the UWB's 
insufficient environmental perception. However, the 
visual positioning technique is affected by a single 
texture, light and dark changes, etc., which are prone 
to positioning failure. Moreover, monocular vision 
SLAM (simultaneous localization and mapping) 
suffers from scale drift and axial blur. For this reason, 
upon the UWB EKF positioning model and the 
monocular vision SLAM model [32], a UWB/vision 
fusion model is proposed here for indoor positioning 
under the consideration of the visual scale factors and 
heading deviations [33] with the following state vector 

at kt : 

[ ]T
k k k k k k k=x X Y v sθ ϕ            (26) 

where, kX  and kY  represent plane coordinates, 

kv  represents pedestrian speed, kθ  represents the 
angle of movement direction, ks  represents the 
ambiguity of the scale, and kφ   represents the 

deflection angle between the plane coordinates 
calculated by vision and the plane coordinates 
calculated by UWB. 

According to the error equation of vision and 
UWB, the corresponding state equation is: 

1
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Where xw  and yw  respectively represent the 

plane position error, vw , θw  and sw   represent the 

speed error, heading angle error and visual scale 
factor error respectively. If the visually measured 
position, heading, and the UWB measured position 
are taken as the observations, the UWB/vision 
observation equations are as given below: 

1 0 0 0 0 0
0 1 0 0 0 0

uwb
uwb

uwb

   
= +   

  

X
X e

Y
 (28) 

0 0 0
0 0 0

vision vision
vision

vision vision

cos sin
sin cos

φ φ
φ φ

−   
= +   

   

X X
X e

Y Y
           (29) 

wherein visionX and visionY  are the position 
coordinates derived from the vision sensor,  uwbX  
and uwbY  are the position derived by UWB, visione is 
the vision position measurement noise vector, and 

uwbe  is the UWB position measurement noise vector. 

4 The Multisource indoor positioning 
fusion framework 

In order to overcome the obstacles that are oftern 
faced in UWB indoor positioning technique, the 
robust EKF UWB positioning model based on 

adaptive gain matrix, the UWB/PDR/map integrated 
positioning model and the UWB/vision integrated 
positioning model shown in Figure 2 have been 
proposed, repectively, and used to improve the UWB 
indoor positioning technique inclusive of reducing 
the number of the UWB base stations and the impact 
of the indoor non-line-of-sight, as well as the indoor 
environment perception, frequent changes in light 
and localization of areas with sparse texture. 
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Fig. 2 Heterogeneous information fusion positioning framework 

5 Results and their analysis 

5.1 UWB robust EKF positioning results analysis 

The UWB equipment used in this paper is shown 
in Figure 3, which can be set as base station or 
mobile station by command, and automatically 
change the working mode. The equipment mainly 
consists of UWB chip, 4G communication module 
and a package structure. When it is set as a mobile 
station, it can measure the distance between it and 
each base station, and transmit the distance 
information to the upper computer system through 
4G module. Its performance is shown in the Table 1. 

 

Fig.3 UWB anchor and tag two-in-one device 

Table 1 Performance of UWB anchor and tag 
two-in-one device 

Performance Parameter 
Size 12.5*9.5*2cm 

Receiving sensitivity -118dBm 
Ranging accuracy ≤12cm 

Positioning accuracy  ≤30cm 
Line-of-sight ranging distance Max 800m 

Positioning sampling rate 1Hz 

The experimental scene is on the laboratory floor 

(as shown in Figure 4), and the corridor is about 65m 
long and 3M wide. Several positioning base stations 
(red triangle in the figure in Figure 5) are set in the 
classroom and corridor, and their point coordinates 
are determined by the total station to establish a 
relative coordinate system. The experimenter walked 
at a constant speed (from left to right) along the 
established route with UWB mobile station, as shown 
in Figure 5, the trajectory results of different 
algorithms are showed. 

 

Fig.4 Experimental environment 
Figure 6 shows the positioning errors resulted 

from least squares, EKF and the robust EKF method 
in this paper. It can be seen that the three positioning 
trajectories well agree with the real trajectory. The 
2D root mean square error was ±1.18m from the least 
square method. The same root mean square error was 
±0.28m from the EKF and ±0.13mfrom the proposed 
method, from which 94% of the point error was 
better than ±0.50m, and 6% of the point error 
between ±0.50m-±1.00m. 
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Fig.5 Positioning result track            
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(a) Least square positioning error 
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(b) EKF positioning error  
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(c) Robust EKF positioning error 

Fig.6 Positioning trajectory and errors 

5.2 UWB/PDR/Map Fusion 

5.2.1 UWB with full signal coverage 

In this experiment, a  MEMS IMU named 
MPU9250 is used, which has 9-axis accelerpmeter, 
gyroscope and magnetometer producted by 
InvenSense Company(Sunnyvale, CA,USA). Some 
of its performance parameters are as Table 2. During 
the experiment, UWB and IMU were bound to the 
instep of the experimenter, as shown in Figure 7. 
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Table2.  MPU9250 partial parameters 

Performance Parameter 
Operating Voltage 

Supply 
2.4V to 3.6V 

Gyro Full Scale Range ±250 ±500 ±1000 
±2000  °/s 

Gyro Rate Noise 0.01 dps/Hz 
Gyro Sensitivity Scale 

Factor 
TYP 32.8 
LBS/(°/s) 

Gyro Rate Noise 
Spectral Density 

0.01d°/s/√ Hz 

Accel Sensitivity Scale 
Factor 

4,096 LSB/g 

Accel Noise Power 
Spectral Density 

300μg/√ Hz 

Accel Full Scale 
Range 

±2  ±4  ±8  ±16 g 

Accel Sensitivity ±4800 LSB/g 

 

Fig.7 Equipment placement 

For the best performance, an ideal working 
environment was introduced for conducting our 
experiments, in which the UWB signal covered the 
entire positioning area. 12 UWB base stations cover 
part of the corridor and a laboratory, as shown in the 

red triangle in the Figure 8. The experiment takes the 
north as the Y axis and the East as the X axis.  

So, as in Figure 8, the positioning trajectories 
from the UWB, unconstrained PDR, and map-
constrained PDR could be obtained. The UWB 
positioning result was basically coicided with the 
actual trajectory and had the root mean square errors: 
±0.13m in the X direction and ±0.16m in the Y 
direction. However, due to the low positioning 
frequency (1 Hz) of UWB and the long time interval 
of updating the position information, it is easy to 
cause the problem of positioning discontinuity at the 
corner. The PDR positioning track has ranged from 
indoor to outdoor and had the root mean square errors 
about ±1.55m in the X direction and about ±2.06m in 
the Y direction. The PDR positioning method on map 
constraints escaped from the above situation, and its 
solution was in good agreement with the real 
trajectory, but  early or late turns did happen. The 
corresponding root mean square errors were about 
±0.25m in the X direction and about ±0.40m in the Y 
direction. By using this method, the estimated 
trajectory was basically consistent with the actual one, 
and further the integration with the PDR data, the 
positioning rate was improved, and the problem of 
discontinuous positioning at the corner is avoided. 
The solution had the root mean square errors of about 
±0.15m in the X direction and about ±0.18m in the Y 
direction. 

 
Fig.8 UWB location results with the full signal coverage 

5.2.2 UWB partial coverage scenarios 

In order to study the UWB performance with the 
partial singal coverage, two signal lock-out scenarios 
were simulated. Figure 9(a) shows the scenario where 

the UWB signal lost lock three times, and the time 
interval of each loss of lock was 5 seconds. Figure 
9(b) shows the scenario where UWB signals were 
only available at both ends of the corridor and 
indoors.  
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(a) Locate the track when the signal is out of lock 3 times 

 
(b) Locate the trajectory when most UWB signals in the corridor lose lock 

Fig.9 Positioning results when UWB signal is partially covered 

A summary is given here. The blue line in 
Figure 9 represents the UWB positioning track, with 
the missing parts where the UWB signals were not 
available. As can be seen, with the UWB signals, 
high-precision positioning can still be achieved. In 
the uncovered area, even if there was no UWB 
positioning result, the positioning was still achieved 
with the aid of PDR data. However, the positioning 
accuracy was quickly droped down as only the map-
constrained PDR positioning result was made 
available in 1-2 seconds after the UWB signal lost 
lock. The quantitative analysis of the results in 
Figures 9(a) and 9(b) gave the root mean square 
errors of about ±0.11m in the X direction and  about 
±0.20m in the Y direction from the former. From the 
latter, the root mean square error of X direction was 
about ±0.19m and the Y direction was about ±0.38m, 
which means that, when indoors, the base station 
equipment was located on the ground and affected by 
non-line-of-sight, the positioning accuracy was 
degraded. In addition, the availability of the UWB 
positioning solution was low, which resulted in an 
increased trajectory inconsistency at short-distance 
turns, further with increasing of the positioning errors. 

5.3 UWB/visual fusion 

5.3.1 Experiments in light change environment 

The camera used in the experiment is the 
Guardian camera (Figure 10) purchased by Taobao, 
and its performance parameters are shown in the 
Table 3. The experimental scenario is shown in the 
Figure11. We placed four UWB base stations in four 
corners of the laboratory. The experimenter held the 
camera and UWB bound together and circled 
clockwise three times along the established route. 

 
Fig.10 Guardian camera                    
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Fig.11 Experimental scene 

Table 3.Performance of the Guardian camera 

Performance Parameter 
Frame rate(FPS) 10 

Fx(pixels) 3637.74 
Fy(pixels) 3658.25 

Resolution(pixels) 1920 * 1080 
Brightness mode AUTO 

When a camera faces the window, the brightness 
of its images will decrease, especially when it is 
rotating. Conversely, when it faces the opposite 
direction, the brightness will increase. Frequent 
changes in light brightness may cause SLAM 
positioning to fail. Figure 12 shows the positioning 
results from UWB, vision and their fusion. The blue 
circles and red triangles in the figure represent the 
location points from the UWB and the combination 
of UWB and vision, respectively, while the blue line 
represents the actual trajectory. Besides, Figure 12(b) 
presents the visual location result while Figure 12(c) 
plots the positioning errors of the UWB/vision fusion 
solution. From Figure 12(a), most of the UWB 
positioning results were consistent with the designed 
route, but there were also a certain number of the 
positioning points with large differences from the 
actual route, for example, the points at the left bottom 
corner, on the top and at some other positions. The 
2D root mean square error was ±0.32m. From Figure 
12(b), firstly, some of the results accurately described 
the walking trajectory; secondly,the monocular 
positioning method only delivers the relative 
positioning information; thirdly, a few of the factors, 
such as sparse texture, brightness changes and in-situ 
turns etc., caused positioning failures many times. 
Finally, in the process, although SLAM's loopback 
detection and back-end optimization improved the 

positioning results, there were still some large errors 
at the upper right corner. In the fusion positioning 
results, almost all the red dots were distributed on 
both sides of the actual route, which indicated that 
the integrated solution was more accurate than the 
solution using the UWB technique alone and gave the 
2D root mean square error of ±0.18m. In addition, the 
fusion algorithm also functions to limit the visual 
positioning errors (Figure 12(b)) and solve the 
problem due to the scale blur. 
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(c) Fusion positioning errors 

Fig.12 Location results of UWB / vision fusion 
in light changing environment 
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5.3.2 Experiments in sparse texture environment 

Figure 13 shows the positioning results in the 
sparsely textured corridors and classrooms with white 
walls. In Figure 13(a), the red and blue curves present 
the UWB and the UWB/vision integrated positioning 
results, respectively,  while the green curve presents 
the real trajectory. The integrated positioning results 
were  in good agreement with the actual trajectory 
and had the root mean square error of ±0.17m. In the 
integration, UWB provides the absolute positioning 
information and also functions as the initial vision 
positioning parameters. In case the vision positioning 
fails, the positioning can be resumed on the spot, 
thereby the continuous positioning is ensured. Figure 
13(c) plots the positioning errors, in which the blue 
line is for UWB, and the red line for the UWB/vision 
fusion. From our analysis, about 53% of the points 
from the integrated solution were at an accuracy level 
of ±0.1 meters, about 22% at an accuracy of ±0.1-
±0.2 meters, 25% at an accuracy of ±0.2-±0.3 meters, 
and 10% at an accuracy of ±0.3-±0.4 meters. 

 
(a) UWB/visual fusion positioning results 

 
(b) UWB positioning residual 

 
(c) Residual distribution curve 

Fig. 13 Results from the UWB/vision fusion in 
sparse texture environment 

6 Conclusions 

To have aimed at the problems in the UWB indoor 
positioning, whose performance has been restricted 
by the location and number of available base stations, 
indoor non-line-of-sight and the inability to perceive 
the indoor environment in real time, this paper 
proposed a positioning approach based on 
heterogeneous information constraints such as UWB, 
PDR and vision. The UWB positioning model based 
on robust EKF can adjust the gain matrix according 
to the predicted residuals to reduce or eliminate the 
influence of gross errors on the state vector. The error 
in 2D planar positioning was about ±0.13m. 
Compared with the least squares and EKF algorithms, 
the positioning accuracy was increased by 88.98% 
and 53.57%, respectively. Apparently, UWB provides 
the absolute spatial reference for the PDR positioning 
and suppresses the divergence of the PDR positioning. 
At the same time, the use of the PDR technique in 
our experiments increased the positioning availability 
of the UWB technique, complementarily solved the 
positioning problem caused by poor UWB signal 
coverage or fully obstructed areas, and helped with 
indoor maps to suppress the PDR heading divergence 
and positioning divergence. The fusion positioning 
model based on UWB/vision nicely solved the 
problems of the scale errors in monocular vision 
SLAM, frequently required re-initialization due to 
environmental factors (resulting in discontinuous 
positioning), and the challenges due to sparse 
textures or frequent lighting changes in indoor 
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environments, and achieved a positioning accuracy of 
±0.2m. 

Although the integrated positioning strategy based 
on multi-source heterogeneous information has made 
great progress, it is still facing certain difficulty to 
satisfy the requirements of indoor and outdoor high-
precision seamless positioning in emergency rescues 
such as urban fires and earthquakes. Therefore, the 
multi-sensor fusion that integrates positioning and 
scene perception, and wearable or simply assembled 
devices, when one conducts the positioning in 
complex environments, is still our next focus. 
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